Cargando…

AB290. SPR-17 Prosthesis insertion into segmented biomechanics simulation models

OBJECTIVE: Biomechanical simulation requires accurate representation of the geometry of the structures to be studied. Specifically, when simulating the interaction of implanted prosthetics with surrounding tissues, the geometric and mechanical properties of the prosthesis and the surrounding tissues...

Descripción completa

Detalles Bibliográficos
Autores principales: Hoyte, Lennox, Lisle, Curtis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5143260/
http://dx.doi.org/10.21037/tau.2016.s290
Descripción
Sumario:OBJECTIVE: Biomechanical simulation requires accurate representation of the geometry of the structures to be studied. Specifically, when simulating the interaction of implanted prosthetics with surrounding tissues, the geometric and mechanical properties of the prosthesis and the surrounding tissues need to be adequately represented. The present work describes methods for inserting test prostheses into magnetic resonance imaging (MRI) derived geometric models of the pelvic floor structures, in order to create realistic simulation models. METHODS: We modified an existing public domain image analysis software tool to allow placement and segmentation of arbitrarily shaped 3D objects into the output segmented geometry of a pelvic MRI image dataset. The tool was applied to create composite segmented geometry and 3D models of the MRI derived pelvic floor structures with the inserted prostheses in the intended anatomic locations, suitable for biomechanical simulation model creation. RESULTS: Segmentations of the organs in the source pelvic MRI datasets were created, showing the segmented embedded prostheses in the planned location. Three dimensional reconstructions of the segmented datasets were generated, which were viewable from multiple angles, and the ability to turn on and off all tissue and prosthesis layers was demonstrated. CONCLUSIONS: We created a software application for inserting prostheses into segmented MRI based datasets. The output segmentations were suitable for input into a soft-tissue simulation tool suite, which generated simulation results suitable for analysis. This tool has the potential to enable patient specific, iterative surgical planning of prolapse repair strategies. FUNDING SOURCE(S): None