Cargando…

Structural equation modeling for decomposing rank-dependent indicators of socioeconomic inequality of health: an empirical study

We present a flexible structural equation modeling (SEM) framework for the regression-based decomposition of rank-dependent indicators of socioeconomic inequality of health and compare it with simple ordinary least squares (OLS) regression. The SEM framework forms the basis for a proper use of the m...

Descripción completa

Detalles Bibliográficos
Autores principales: Kessels, Roselinde, Erreygers, Guido
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5143337/
https://www.ncbi.nlm.nih.gov/pubmed/27928784
http://dx.doi.org/10.1186/s13561-016-0134-2
Descripción
Sumario:We present a flexible structural equation modeling (SEM) framework for the regression-based decomposition of rank-dependent indicators of socioeconomic inequality of health and compare it with simple ordinary least squares (OLS) regression. The SEM framework forms the basis for a proper use of the most prominent one- and two-dimensional decompositions and provides an argument for using the bivariate multiple regression model for two-dimensional decomposition. Within the SEM framework, the two-dimensional decomposition integrates the feedback mechanism between health and socioeconomic status and allows for different sets of determinants of these variables. We illustrate the SEM approach and its outperformance of OLS using data from the 2011 Ethiopian Demographic and Health Survey.