Cargando…
Random Subspace Aggregation for Cancer Prediction with Gene Expression Profiles
Background. Precisely predicting cancer is crucial for cancer treatment. Gene expression profiles make it possible to analyze patterns between genes and cancers on the genome-wide scale. Gene expression data analysis, however, is confronted with enormous challenges for its characteristics, such as h...
Autores principales: | Yang, Liying, Liu, Zhimin, Yuan, Xiguo, Wei, Jianhua, Zhang, Junying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5143691/ https://www.ncbi.nlm.nih.gov/pubmed/27999797 http://dx.doi.org/10.1155/2016/4596326 |
Ejemplares similares
-
Analysis of breast cancer subtypes by AP-ISA biclustering
por: Yang, Liying, et al.
Publicado: (2017) -
Discriminative local subspaces in gene expression data for effective gene function prediction
por: Puelma, Tomas, et al.
Publicado: (2012) -
Stratification of Breast Cancer by Integrating Gene Expression Data and Clinical Variables
por: He, Zongzhen, et al.
Publicado: (2019) -
Subspace-by-subspace preconditioners for structured linear systems
por: Daydé, M J, et al.
Publicado: (1998) -
Integrating Somatic Mutations for Breast Cancer Survival Prediction Using Machine Learning Methods
por: He, Zongzhen, et al.
Publicado: (2021)