Cargando…

A Sparsity-Constrained Preconditioned Kaczmarz Reconstruction Method for Fluorescence Molecular Tomography

Fluorescence molecular tomography (FMT) is an imaging technique that can localize and quantify fluorescent markers to resolve biological processes at molecular and cellular levels. Owing to a limited number of measurements and a large number of unknowns as well as the diffusive transport of photons...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Duofan, Liang, Jimin, Li, Yao, Qiu, Guanghui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5143787/
https://www.ncbi.nlm.nih.gov/pubmed/27999796
http://dx.doi.org/10.1155/2016/4504161
Descripción
Sumario:Fluorescence molecular tomography (FMT) is an imaging technique that can localize and quantify fluorescent markers to resolve biological processes at molecular and cellular levels. Owing to a limited number of measurements and a large number of unknowns as well as the diffusive transport of photons in biological tissues, the inverse problem in FMT is usually highly ill-posed. In this work, a sparsity-constrained preconditioned Kaczmarz (SCP-Kaczmarz) method is proposed to reconstruct the fluorescent target for FMT. The SCP-Kaczmarz method uses the preconditioning strategy to minimize the correlation between the rows of the forward matrix and constrains the Kaczmarz iteration results to be sparse. Numerical simulation and phantom and in vivo experiments were performed to test the efficiency of the proposed method. The results demonstrate that both the convergence and accuracy of the proposed method are improved compared with the classical memory-efficient low-cost Kaczmarz method.