Cargando…
Dependency of Tunneling-Magnetoresistance Ratio on Nanoscale Spacer Thickness and Material for Double MgO Based Perpendicular-Magnetic-Tunneling-Junction
It was found that in double MgO based perpendicular magnetic tunneling junction spin-valves ex-situ annealed at 400 °C, the tunneling magnetoresistance ratio was extremely sensitive to the material and thickness of the nanoscale spacer: it peaked at a specific thickness (0.40~0.53 nm), and the TMR r...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5144003/ https://www.ncbi.nlm.nih.gov/pubmed/27929031 http://dx.doi.org/10.1038/srep38125 |
Sumario: | It was found that in double MgO based perpendicular magnetic tunneling junction spin-valves ex-situ annealed at 400 °C, the tunneling magnetoresistance ratio was extremely sensitive to the material and thickness of the nanoscale spacer: it peaked at a specific thickness (0.40~0.53 nm), and the TMR ratio for W spacers (~134%) was higher than that for Ta spacers (~98%). This dependency on the spacer material and thickness was associated with the (100) body-centered-cubic crystallinity of the MgO layers: the strain enhanced diffusion length in the MgO layers of W atoms (~1.40 nm) was much shorter than that of Ta atoms (~2.85 nm) and the shorter diffusion length led to the MgO layers having better (100) body-centered-cubic crystallinity. |
---|