Cargando…
EP-DNN: A Deep Neural Network-Based Global Enhancer Prediction Algorithm
We present EP-DNN, a protocol for predicting enhancers based on chromatin features, in different cell types. Specifically, we use a deep neural network (DNN)-based architecture to extract enhancer signatures in a representative human embryonic stem cell type (H1) and a differentiated lung cell type...
Autores principales: | Kim, Seong Gon, Harwani, Mrudul, Grama, Ananth, Chaterji, Somali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5144062/ https://www.ncbi.nlm.nih.gov/pubmed/27929098 http://dx.doi.org/10.1038/srep38433 |
Ejemplares similares
-
Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions
por: Kim, Seong Gon, et al.
Publicado: (2016) -
MicroRNA target prediction using thermodynamic and sequence curves
por: Ghoshal, Asish, et al.
Publicado: (2015) -
Erratum to: ‘MicroRNA target prediction using thermodynamic and sequence curves’
por: Ghoshal, Asish, et al.
Publicado: (2016) -
Intelligent Sports Video Classification Based on Deep Neural Network (DNN) Algorithm and Transfer Learning
por: Guo, Xiaoping
Publicado: (2021) -
AIKYATAN: mapping distal regulatory elements using convolutional learning on GPU
por: Fang, Chih-Hao, et al.
Publicado: (2019)