Cargando…

The effect of local application of low-magnitude high-frequency vibration on the bone healing of rabbit calvarial defects—a pilot study

BACKGROUND: The objective of this pilot study was to evaluate the effect of local application of low-magnitude high-frequency vibration (LMHFV) on the bone healing of rabbit calvarial defects that were augmented with different grafting materials and membranes. METHODS: Four calvarial defects were cr...

Descripción completa

Detalles Bibliográficos
Autores principales: Puhar, Ivan, Ma, Li, Suleimenova, Dina, Chronopoulos, Vasileios, Mattheos, Nikos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5144494/
https://www.ncbi.nlm.nih.gov/pubmed/27931261
http://dx.doi.org/10.1186/s13018-016-0494-7
Descripción
Sumario:BACKGROUND: The objective of this pilot study was to evaluate the effect of local application of low-magnitude high-frequency vibration (LMHFV) on the bone healing of rabbit calvarial defects that were augmented with different grafting materials and membranes. METHODS: Four calvarial defects were created in each of two New Zealand rabbits and filled with the following materials: biphasic calcium phosphate (BCP), deproteinized bovine bone mineral covered with a non-cross-linked collagen membrane (BO/BG), biphasic calcium phosphate covered with a strontium hydroxyapatite-containing collagen membrane (BCP/SR), and non-cross-linked collagen membrane (BG). Four defects in one rabbit served as a control, while the other was additionally subjected to the local LMHFV protocol of 40 Hz, 16 min per day. The rabbits were sacrificed 1 week after surgery. Histomorphometric analysis was performed to determine the percentages of different tissue compartments. RESULTS: Compared to the control defects, the higher percentage of osteoid tissue was found in LMHFV BG defects (35.3 vs. 19.3%), followed by BCP/SR (17.3 vs. 2.0%) and BO/BG (9.3 vs. 1.0%). The fraction occupied by the residual grafting material varied from 40.3% in BO/BG to 22.3% in BCP/SR LMHFV defects. Two-way models revealed that material type was only significant for the osteoid (P= 0.045) and grafting material (P = 0.001) percentages, while the vibration did not provide any statistical significance for all histomorphometric outcomes (P > 0.05). CONCLUSION: Local application of LMHFV did not appear to offer additional benefit in the initial healing phase of rabbit calvarial defects. Histomorphometric measurements after 1 week of healing demonstrated more pronounced signs of early bone formation in both rabbits that were related with material type and independent of LMHFV.