Cargando…

Data supporting regulating temporospatial dynamics of morphogen for structure formation of the lacrimal gland by chitosan biomaterials

The lacrimal gland is responsible for tear synthesis and secretion, and is derived from the epithelia of ocular surface and generated by branching morphogenesis. The dataset presented in this article is to support the research results of the effect of chitosan biomaterials on facilitating the struct...

Descripción completa

Detalles Bibliográficos
Autores principales: Hsiao, Ya-Chuan, Yang, Tsung-Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5144649/
https://www.ncbi.nlm.nih.gov/pubmed/27981201
http://dx.doi.org/10.1016/j.dib.2016.11.042
Descripción
Sumario:The lacrimal gland is responsible for tear synthesis and secretion, and is derived from the epithelia of ocular surface and generated by branching morphogenesis. The dataset presented in this article is to support the research results of the effect of chitosan biomaterials on facilitating the structure formation of the lacrimal gland by regulating temporospatial dynamics of morphogen. The embryonic lacrimal gland explants were used as the standard experimental model for investigating lacrimal gland branching morphogenesis. Chitosan biomaterials promoted lacrimal gland branching with a dose-dependent effect. It helped in vivo binding of hepatocyte growth factor (HGF) related molecules in the epithelial-mesenchymal boundary of emerging epithelial branches. When mitogen-activated protein kinase (MAPK) or protein kinase B (Akt/PKB) inhibitors applied, the chitosan effects reduced. Nonetheless, the ratios of MAPK and Akt/PKB phosphorylation were still greater in the chitosan group than the control. The data demonstrated here confirm the essential role of HGF-signaling in chitosan-promoted structure formation of the lacrimal gland.