Cargando…

A Polar and Nucleotide-Dependent Mechanism of Action for RAD51 Paralogs in RAD51 Filament Remodeling

Central to homologous recombination in eukaryotes is the RAD51 recombinase, which forms helical nucleoprotein filaments on single-stranded DNA (ssDNA) and catalyzes strand invasion with homologous duplex DNA. Various regulatory proteins assist this reaction including the RAD51 paralogs. We recently...

Descripción completa

Detalles Bibliográficos
Autores principales: Taylor, Martin R.G., Špírek, Mário, Jian Ma, Chu, Carzaniga, Raffaella, Takaki, Tohru, Collinson, Lucy M., Greene, Eric C., Krejci, Lumir, Boulton, Simon J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5145814/
https://www.ncbi.nlm.nih.gov/pubmed/27867009
http://dx.doi.org/10.1016/j.molcel.2016.10.020
Descripción
Sumario:Central to homologous recombination in eukaryotes is the RAD51 recombinase, which forms helical nucleoprotein filaments on single-stranded DNA (ssDNA) and catalyzes strand invasion with homologous duplex DNA. Various regulatory proteins assist this reaction including the RAD51 paralogs. We recently discovered that a RAD51 paralog complex from C. elegans, RFS-1/RIP-1, functions predominantly downstream of filament assembly by binding and remodeling RAD-51-ssDNA filaments to a conformation more proficient for strand exchange. Here, we demonstrate that RFS-1/RIP-1 acts by shutting down RAD-51 dissociation from ssDNA. Using stopped-flow experiments, we show that RFS-1/RIP-1 confers this dramatic stabilization by capping the 5′ end of RAD-51-ssDNA filaments. Filament end capping propagates a stabilizing effect with a 5′→3′ polarity approximately 40 nucleotides along individual filaments. Finally, we discover that filament capping and stabilization are dependent on nucleotide binding, but not hydrolysis by RFS-1/RIP-1. These data define the mechanism of RAD51 filament remodeling by RAD51 paralogs.