Cargando…
Guided growth: mechanism and reversibility of modulation
In paediatric orthopaedics, deformities and discrepancies in length of bones are key problems that commonly need to be addressed in daily practice. An understanding of the physiology behind developing bones is crucial for planning treatment. Modulation of the growing bone can be performed in a numbe...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5145828/ https://www.ncbi.nlm.nih.gov/pubmed/27826908 http://dx.doi.org/10.1007/s11832-016-0778-9 |
Sumario: | In paediatric orthopaedics, deformities and discrepancies in length of bones are key problems that commonly need to be addressed in daily practice. An understanding of the physiology behind developing bones is crucial for planning treatment. Modulation of the growing bone can be performed in a number of ways. Here, we discuss the principles and mechanisms behind the techniques. Historically, the first procedures were destructive in their mechanism but reversible techniques were later developed with stapling of the growth plate being the gold standard treatment for decades. It has historically been used for both angular deformities and control of overall bone length. Today, tension band plating has partially overtaken stapling but this technique also carries a risk of complications. The diverging screws in these implants are probably mainly useful for hemiepiphysiodesis. We also discuss new minimally invasive techniques that may become important in future clinical practice. |
---|