Cargando…
Dissecting the Interplay Between Intestinal Microbiota and Host Immunity in Health and Disease: Lessons Learned from Germfree and Gnotobiotic Animal Models
This review elaborates the development of germfree and gnotobiotic animal models and their application in the scientific field to unravel mechanisms underlying host–microbe interactions and distinct diseases. Strictly germfree animals are raised in isolators and not colonized by any organism at all....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Akadémiai Kiadó
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5146645/ https://www.ncbi.nlm.nih.gov/pubmed/27980855 http://dx.doi.org/10.1556/1886.2016.00036 |
Sumario: | This review elaborates the development of germfree and gnotobiotic animal models and their application in the scientific field to unravel mechanisms underlying host–microbe interactions and distinct diseases. Strictly germfree animals are raised in isolators and not colonized by any organism at all. The germfree state is continuously maintained by birth, raising, housing and breeding under strict sterile conditions. However, isolator raised germfree mice are exposed to a stressful environment and exert an underdeveloped immune system. To circumvent these physiological disadvantages depletion of the bacterial microbiota in conventionally raised and housed mice by antibiotic treatment has become an alternative approach. While fungi and parasites are not affected by antibiosis, the bacterial microbiota in these “secondary abiotic mice” have been shown to be virtually eradicated. Recolonization of isolator raised germfree animals or secondary abiotic mice results in a gnotobiotic state. Both, germfree and gnotobiotic mice have been successfully used to investigate biological functions of the conventional microbiota in health and disease. Particularly for the development of novel clinical applications germfree mice are widely used tools, as summarized in this review further focusing on the modulation of bacterial microbiota in laboratory mice to better mimic conditions in the human host. |
---|