Cargando…

Sensitisation of an Azole-Resistant Aspergillus fumigatus Strain containing the Cyp51A-Related Mutation by Deleting the SrbA Gene

Azoles are widely used for controlling fungal growth in both agricultural and medical settings. The target protein of azoles is CYP51, a lanosterol 14-α-demethylase involved in the biosynthesis of ergosterol. Recently, a novel azole resistance mechanism has arisen in pathogenic fungal species Asperg...

Descripción completa

Detalles Bibliográficos
Autores principales: Hagiwara, Daisuke, Watanabe, Akira, Kamei, Katsuhiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5146965/
https://www.ncbi.nlm.nih.gov/pubmed/27934927
http://dx.doi.org/10.1038/srep38833
Descripción
Sumario:Azoles are widely used for controlling fungal growth in both agricultural and medical settings. The target protein of azoles is CYP51, a lanosterol 14-α-demethylase involved in the biosynthesis of ergosterol. Recently, a novel azole resistance mechanism has arisen in pathogenic fungal species Aspergillus fumigatus. Resistant strains contain a 34-bp or 46-bp tandem repeat (TR) in the promoter of cyp51A, and have disseminated globally in a short period of time. In this study, we investigated whether an azole-resistant strain with a 46-bp TR (TR46/Y121F/T289A) could be sensitised to azoles by deletion of srbA, encoding a direct regulator of cyp51A. The loss of SrbA did not affect colony growth or conidia production, but decreased expression of cyp51A. The srbA deletion strain showed hyper-susceptibility to medical azoles as well as azole fungicides, while its sensitivity to non-azole fungicides was unchanged. This is the first demonstration that deletion of a regulator of cyp51A can sensitise an azole-resistant A. fumigatus strain. This finding may assist in the development of new drugs to help combat life-threatening azole-resistant fungal pathogens.