Cargando…
Optimal threshold estimation for binary classifiers using game theory
Many bioinformatics algorithms can be understood as binary classifiers. They are usually compared using the area under the receiver operating characteristic ( ROC) curve. On the other hand, choosing the best threshold for practical use is a complex task, due to uncertain and context-dependent skews...
Autor principal: | Sanchez, Ignacio Enrique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000Research
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5147524/ https://www.ncbi.nlm.nih.gov/pubmed/28003875 http://dx.doi.org/10.12688/f1000research.10114.3 |
Ejemplares similares
-
Binary classifier metrics for optimizing HEP event selection
por: Valassi, Andrea
Publicado: (2019) -
An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes
por: Mohamad, Mohd Saberi, et al.
Publicado: (2013) -
A simple plug-in bagging ensemble based on threshold-moving for classifying binary and multiclass imbalanced data
por: Collell, Guillem, et al.
Publicado: (2018) -
Dataset for classifying and estimating the position, orientation, and dimensions of a list of primitive objects
por: Makki, Alireza, et al.
Publicado: (2022) -
Deconstructing Cross-Entropy for Probabilistic Binary Classifiers
por: Ramos, Daniel, et al.
Publicado: (2018)