Cargando…
Improving the Non-Hydrostatic Numerical Dust Model by Integrating Soil Moisture and Greenness Vegetation Fraction Data with Different Spatiotemporal Resolutions
Dust storms are devastating natural disasters that cost billions of dollars and many human lives every year. Using the Non-Hydrostatic Mesoscale Dust Model (NMM-dust), this research studies how different spatiotemporal resolutions of two input parameters (soil moisture and greenness vegetation fract...
Autores principales: | Yu, Manzhu, Yang, Chaowei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5147792/ https://www.ncbi.nlm.nih.gov/pubmed/27936136 http://dx.doi.org/10.1371/journal.pone.0165616 |
Ejemplares similares
-
Long-Term Spatiotemporal Variations in Soil Moisture in North East China Based on 1-km Resolution Downscaled Passive Microwave Soil Moisture Products
por: Meng, Xiangjin, et al.
Publicado: (2019) -
Widespread increasing vegetation sensitivity to soil moisture
por: Li, Wantong, et al.
Publicado: (2022) -
Assessment of a Spatiotemporal Deep Learning Approach for Soil Moisture Prediction and Filling the Gaps in Between Soil Moisture Observations
por: ElSaadani, Mohamed, et al.
Publicado: (2021) -
Soil–vegetation moisture capacitor maintains dry season vegetation productivity over India
por: Sebastian, Dawn E., et al.
Publicado: (2023) -
Error Propagation in Microwave Soil Moisture and Vegetation Optical Depth Retrievals
por: Feldman, Andrew F., et al.
Publicado: (2021)