Cargando…

Retinal Morphology and Sensitivity Are Primarily Impaired in Eyes with Neuromyelitis Optica Spectrum Disorder (NMOSD)

BACKGROUND: Previous studies of neuromyelitis optica spectrum disorder (NMOSD) using spectral domain optical coherence tomography (SD-OCT) showed that the outer nuclear layer (ONL) in eyes without a history of optic neuritis (ON) was thinner than that of healthy controls. It remains unclear whether...

Descripción completa

Detalles Bibliográficos
Autores principales: Akiba, Ryutaro, Yokouchi, Hirotaka, Mori, Masahiro, Oshitari, Toshiyuki, Baba, Takayuki, Sawai, Setsu, Kuwabara, Satoshi, Yamamoto, Shuichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5147908/
https://www.ncbi.nlm.nih.gov/pubmed/27936154
http://dx.doi.org/10.1371/journal.pone.0167473
Descripción
Sumario:BACKGROUND: Previous studies of neuromyelitis optica spectrum disorder (NMOSD) using spectral domain optical coherence tomography (SD-OCT) showed that the outer nuclear layer (ONL) in eyes without a history of optic neuritis (ON) was thinner than that of healthy controls. It remains unclear whether the ONL thinning is caused by a direct attack on the retina by an autoantibody or a retrograde degeneration. OBJECTIVE: To determine the mechanisms involved in the retinal damage in eyes with NMOSD without ON. METHODS: SD-OCT was used to determine the thicknesses of the different retinal layers of 21 eyes of 12 NMOSD patients without prior ON and 19 eyes of 10 healthy controls. Eyes with peripapillary retinal nerve fiber layer (RNFL) thinning were excluded to eliminate the confounding effects of retrograde degeneration. Microperimetry was used to determine the central retinal sensitivity. The data of the two groups were compared using generalized estimated equation models to account for inter-eye dependencies. RESULTS: The ganglion cell plus inner plexiform layer and the inner nuclear layer plus outer plexiform layer thicknesses of the NMOSD eyes were not significantly different from that of the control eyes (P = 0.28, P = 0.78). However, the ONL and average macular thickness (AMT) in the NMOSD eyes were significantly thinner than that of the control eyes (P = 0.022, P = 0.036). The retinal sensitivity in the central 10°, 10° to 2°, and 2° sectors were significantly lower in the NMOSD eyes than in the control eyes (P = 0.013, P = 0.022, P = 0.002). CONCLUSIONS: The ONL thinning, AMT thinning, and reduced retinal sensitivity in eyes with NMOSD without significant peripapillary RNFL thinning are most likely due to direct retinal pathology.