Cargando…

Spatial-Temporal Analysis of Environmental Data of North Beijing District Using Hilbert-Huang Transform

Temperature, solar radiation and water are major important variables in ecosystem models which are measurable via wireless sensor networks (WSN). Effective data analysis is necessary to extract significant spatial and temporal information. In this work, information regarding the long term variation...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiang, Yu, Wang, Xuezhi, He, Lihua, Wang, Wenyong, Moran, William
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5147931/
https://www.ncbi.nlm.nih.gov/pubmed/27936056
http://dx.doi.org/10.1371/journal.pone.0167662
Descripción
Sumario:Temperature, solar radiation and water are major important variables in ecosystem models which are measurable via wireless sensor networks (WSN). Effective data analysis is necessary to extract significant spatial and temporal information. In this work, information regarding the long term variation of seasonal field environment conditions is explored using Hilbert-Huang transform (HHT) based analysis on the wireless sensor network data collection. The data collection network, consisting of 36 wireless nodes, covers an area of 100 square kilometres in Yanqing, the northwest of Beijing CBD, in China and data collection involves environmental parameter observations taken over a period of three months in 2011. The analysis used the empirical mode decomposition (EMD/EEMD) to break a time sequence of data down to a finite set of intrinsic mode functions (IMFs). Both spatial and temporal properties of data explored by HHT analysis are demonstrated. Our research shows potential for better understanding the spatial-temporal relationships among environmental parameters using WSN and HHT.