Cargando…
Quantum Decision Theory in Simple Risky Choices
Quantum decision theory (QDT) is a recently developed theory of decision making based on the mathematics of Hilbert spaces, a framework known in physics for its application to quantum mechanics. This framework formalizes the concept of uncertainty and other effects that are particularly manifest in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148595/ https://www.ncbi.nlm.nih.gov/pubmed/27936217 http://dx.doi.org/10.1371/journal.pone.0168045 |
_version_ | 1782473868350324736 |
---|---|
author | Favre, Maroussia Wittwer, Amrei Heinimann, Hans Rudolf Yukalov, Vyacheslav I. Sornette, Didier |
author_facet | Favre, Maroussia Wittwer, Amrei Heinimann, Hans Rudolf Yukalov, Vyacheslav I. Sornette, Didier |
author_sort | Favre, Maroussia |
collection | PubMed |
description | Quantum decision theory (QDT) is a recently developed theory of decision making based on the mathematics of Hilbert spaces, a framework known in physics for its application to quantum mechanics. This framework formalizes the concept of uncertainty and other effects that are particularly manifest in cognitive processes, which makes it well suited for the study of decision making. QDT describes a decision maker’s choice as a stochastic event occurring with a probability that is the sum of an objective utility factor and a subjective attraction factor. QDT offers a prediction for the average effect of subjectivity on decision makers, the quarter law. We examine individual and aggregated (group) data, and find that the results are in good agreement with the quarter law at the level of groups. At the individual level, it appears that the quarter law could be refined in order to reflect individual characteristics. This article revisits the formalism of QDT along a concrete example and offers a practical guide to researchers who are interested in applying QDT to a dataset of binary lotteries in the domain of gains. |
format | Online Article Text |
id | pubmed-5148595 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-51485952016-12-28 Quantum Decision Theory in Simple Risky Choices Favre, Maroussia Wittwer, Amrei Heinimann, Hans Rudolf Yukalov, Vyacheslav I. Sornette, Didier PLoS One Research Article Quantum decision theory (QDT) is a recently developed theory of decision making based on the mathematics of Hilbert spaces, a framework known in physics for its application to quantum mechanics. This framework formalizes the concept of uncertainty and other effects that are particularly manifest in cognitive processes, which makes it well suited for the study of decision making. QDT describes a decision maker’s choice as a stochastic event occurring with a probability that is the sum of an objective utility factor and a subjective attraction factor. QDT offers a prediction for the average effect of subjectivity on decision makers, the quarter law. We examine individual and aggregated (group) data, and find that the results are in good agreement with the quarter law at the level of groups. At the individual level, it appears that the quarter law could be refined in order to reflect individual characteristics. This article revisits the formalism of QDT along a concrete example and offers a practical guide to researchers who are interested in applying QDT to a dataset of binary lotteries in the domain of gains. Public Library of Science 2016-12-09 /pmc/articles/PMC5148595/ /pubmed/27936217 http://dx.doi.org/10.1371/journal.pone.0168045 Text en © 2016 Favre et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Favre, Maroussia Wittwer, Amrei Heinimann, Hans Rudolf Yukalov, Vyacheslav I. Sornette, Didier Quantum Decision Theory in Simple Risky Choices |
title | Quantum Decision Theory in Simple Risky Choices |
title_full | Quantum Decision Theory in Simple Risky Choices |
title_fullStr | Quantum Decision Theory in Simple Risky Choices |
title_full_unstemmed | Quantum Decision Theory in Simple Risky Choices |
title_short | Quantum Decision Theory in Simple Risky Choices |
title_sort | quantum decision theory in simple risky choices |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148595/ https://www.ncbi.nlm.nih.gov/pubmed/27936217 http://dx.doi.org/10.1371/journal.pone.0168045 |
work_keys_str_mv | AT favremaroussia quantumdecisiontheoryinsimpleriskychoices AT wittweramrei quantumdecisiontheoryinsimpleriskychoices AT heinimannhansrudolf quantumdecisiontheoryinsimpleriskychoices AT yukalovvyacheslavi quantumdecisiontheoryinsimpleriskychoices AT sornettedidier quantumdecisiontheoryinsimpleriskychoices |