Cargando…
GWRM: An R Package for Identifying Sources of Variation in Overdispersed Count Data
Understanding why a random variable is actually random has been in the core of Statistics from its beginnings. The generalized Waring regression model for count data explains that inherent variability is given by three possible sources: randomness, liability and proneness. The model extends the nega...
Autores principales: | Vílchez-López, Silverio, Sáez-Castillo, Antonio José, Olmo-Jiménez, María José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148598/ https://www.ncbi.nlm.nih.gov/pubmed/27936064 http://dx.doi.org/10.1371/journal.pone.0167570 |
Ejemplares similares
-
Negative Binomial Regression: Understanding and Modeling Overdispersed Count Data
por: Hilbe, Joseph M
Publicado: (2011) -
Dirichlet negative multinomial regression for overdispersed correlated count
data
por: Farewell, Daniel M., et al.
Publicado: (2013) -
A Bayesian Approach to Account for Misclassification and Overdispersion in Count Data
por: Wu, Wenqi, et al.
Publicado: (2015) -
Differentially Expressed Heterogeneous Overdispersion Genes Testing for Count Data
por: Yuan, Yubai, et al.
Publicado: (2023) -
Modeling zero inflation and overdispersion in provisional Covid-19 death counts
por: Effiong, Andem, et al.
Publicado: (2022)