Cargando…
A Predictive Model for Medical Events Based on Contextual Embedding of Temporal Sequences
BACKGROUND: Medical concepts are inherently ambiguous and error-prone due to human fallibility, which makes it hard for them to be fully used by classical machine learning methods (eg, for tasks like early stage disease prediction). OBJECTIVE: Our work was to create a new machine-friendly representa...
Autores principales: | Farhan, Wael, Wang, Zhimu, Huang, Yingxiang, Wang, Shuang, Wang, Fei, Jiang, Xiaoqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148810/ https://www.ncbi.nlm.nih.gov/pubmed/27888170 http://dx.doi.org/10.2196/medinform.5977 |
Ejemplares similares
-
Privacy-Preserving Predictive Modeling: Harmonization of Contextual Embeddings From Different Sources
por: Huang, Yingxiang, et al.
Publicado: (2018) -
Readmission prediction via deep contextual embedding of clinical concepts
por: Xiao, Cao, et al.
Publicado: (2018) -
Keyphrase Extraction as Sequence Labeling Using Contextualized Embeddings
por: Sahrawat, Dhruva, et al.
Publicado: (2020) -
Impact analysis of keyword extraction using contextual word embedding
por: Khan, Muhammad Qasim, et al.
Publicado: (2022) -
Combining Contextualized Embeddings and Prior Knowledge for Clinical Named Entity Recognition: Evaluation Study
por: Jiang, Min, et al.
Publicado: (2019)