Cargando…

Co-transcriptional folding is encoded within RNA genes

BACKGROUND: Most of the existing RNA structure prediction programs fold a completely synthesized RNA molecule. However, within the cell, RNA molecules emerge sequentially during the directed process of transcription. Dedicated experiments with individual RNA molecules have shown that RNA folds while...

Descripción completa

Detalles Bibliográficos
Autores principales: Meyer, Irmtraud M, Miklós, István
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514895/
https://www.ncbi.nlm.nih.gov/pubmed/15298702
http://dx.doi.org/10.1186/1471-2199-5-10
_version_ 1782121744802250752
author Meyer, Irmtraud M
Miklós, István
author_facet Meyer, Irmtraud M
Miklós, István
author_sort Meyer, Irmtraud M
collection PubMed
description BACKGROUND: Most of the existing RNA structure prediction programs fold a completely synthesized RNA molecule. However, within the cell, RNA molecules emerge sequentially during the directed process of transcription. Dedicated experiments with individual RNA molecules have shown that RNA folds while it is being transcribed and that its correct folding can also depend on the proper speed of transcription. METHODS: The main aim of this work is to study if and how co-transcriptional folding is encoded within the primary and secondary structure of RNA genes. In order to achieve this, we study the known primary and secondary structures of a comprehensive data set of 361 RNA genes as well as a set of 48 RNA sequences that are known to differ from the originally transcribed sequence units. We detect co-transcriptional folding by defining two measures of directedness which quantify the extend of asymmetry between alternative helices that lie 5' and those that lie 3' of the known helices with which they compete. RESULTS: We show with statistical significance that co-transcriptional folding strongly influences RNA sequences in two ways: (1) alternative helices that would compete with the formation of the functional structure during co-transcriptional folding are suppressed and (2) the formation of transient structures which may serve as guidelines for the co-transcriptional folding pathway is encouraged. CONCLUSIONS: These findings have a number of implications for RNA secondary structure prediction methods and the detection of RNA genes.
format Text
id pubmed-514895
institution National Center for Biotechnology Information
language English
publishDate 2004
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-5148952004-09-01 Co-transcriptional folding is encoded within RNA genes Meyer, Irmtraud M Miklós, István BMC Mol Biol Research Article BACKGROUND: Most of the existing RNA structure prediction programs fold a completely synthesized RNA molecule. However, within the cell, RNA molecules emerge sequentially during the directed process of transcription. Dedicated experiments with individual RNA molecules have shown that RNA folds while it is being transcribed and that its correct folding can also depend on the proper speed of transcription. METHODS: The main aim of this work is to study if and how co-transcriptional folding is encoded within the primary and secondary structure of RNA genes. In order to achieve this, we study the known primary and secondary structures of a comprehensive data set of 361 RNA genes as well as a set of 48 RNA sequences that are known to differ from the originally transcribed sequence units. We detect co-transcriptional folding by defining two measures of directedness which quantify the extend of asymmetry between alternative helices that lie 5' and those that lie 3' of the known helices with which they compete. RESULTS: We show with statistical significance that co-transcriptional folding strongly influences RNA sequences in two ways: (1) alternative helices that would compete with the formation of the functional structure during co-transcriptional folding are suppressed and (2) the formation of transient structures which may serve as guidelines for the co-transcriptional folding pathway is encouraged. CONCLUSIONS: These findings have a number of implications for RNA secondary structure prediction methods and the detection of RNA genes. BioMed Central 2004-08-06 /pmc/articles/PMC514895/ /pubmed/15298702 http://dx.doi.org/10.1186/1471-2199-5-10 Text en Copyright © 2004 Meyer and Miklós; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License ( (http://creativecommons.org/licenses/by/2.0) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Meyer, Irmtraud M
Miklós, István
Co-transcriptional folding is encoded within RNA genes
title Co-transcriptional folding is encoded within RNA genes
title_full Co-transcriptional folding is encoded within RNA genes
title_fullStr Co-transcriptional folding is encoded within RNA genes
title_full_unstemmed Co-transcriptional folding is encoded within RNA genes
title_short Co-transcriptional folding is encoded within RNA genes
title_sort co-transcriptional folding is encoded within rna genes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514895/
https://www.ncbi.nlm.nih.gov/pubmed/15298702
http://dx.doi.org/10.1186/1471-2199-5-10
work_keys_str_mv AT meyerirmtraudm cotranscriptionalfoldingisencodedwithinrnagenes
AT miklosistvan cotranscriptionalfoldingisencodedwithinrnagenes