Cargando…
Evaluating the High Risk Groups for Suicide: A Comparison of Logistic Regression, Support Vector Machine, Decision Tree and Artificial Neural Network
BACKGROUND: We aimed to assess the high-risk group for suicide using different classification methods includinglogistic regression (LR), decision tree (DT), artificial neural network (ANN), and support vector machine (SVM). METHODS: We used the dataset of a study conducted to predict risk factors of...
Autores principales: | AMINI, Payam, AHMADINIA, Hasan, POOROLAJAL, Jalal, MOQADDASI AMIRI, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Tehran University of Medical Sciences
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5149472/ https://www.ncbi.nlm.nih.gov/pubmed/27957463 |
Ejemplares similares
-
Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms
por: Nhu, Viet-Ha, et al.
Publicado: (2020) -
Prevalence and Determinants of Preterm Birth in Tehran, Iran: A Comparison between Logistic Regression and Decision Tree Methods
por: Amini, Payam, et al.
Publicado: (2017) -
A Hybrid Approach of Stepwise Regression, Logistic Regression, Support Vector Machine, and Decision Tree for Forecasting Fraudulent Financial Statements
por: Chen, Suduan, et al.
Publicado: (2014) -
Prediction of Kidney Graft Rejection Using Artificial Neural Network
por: Tapak, Leili, et al.
Publicado: (2017) -
Construction data mining methods in the prediction of death in hemodialysis patients using support vector machine, neural network, logistic regression and decision tree
por: KHAZAEI, SALMAN, et al.
Publicado: (2021)