Cargando…

Automated assessment of joint synovitis activity from medical ultrasound and power doppler examinations using image processing and machine learning methods

OBJECTIVES: Rheumatoid arthritis is the most common rheumatic disease with arthritis, and causes substantial functional disability in approximately 50% patients after 10 years. Accurate measurement of the disease activity is crucial to provide an adequate treatment and care to the patients. The aim...

Descripción completa

Detalles Bibliográficos
Autores principales: Cupek, Rafal, Ziębiński, Adam
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Narodowy Instytut Geriatrii, Reumatologii i Rehabilitacji w Warszawie 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5149571/
https://www.ncbi.nlm.nih.gov/pubmed/27994268
http://dx.doi.org/10.5114/reum.2016.63664
Descripción
Sumario:OBJECTIVES: Rheumatoid arthritis is the most common rheumatic disease with arthritis, and causes substantial functional disability in approximately 50% patients after 10 years. Accurate measurement of the disease activity is crucial to provide an adequate treatment and care to the patients. The aim of this study is focused on a computer aided diagnostic system that supports an assessment of synovitis severity. MATERIAL AND METHODS: This paper focus on a computer aided diagnostic system that was developed within joint Polish–Norwegian research project related to the automated assessment of the severity of synovitis. Semiquantitative ultrasound with power Doppler is a reliable and widely used method of assessing synovitis. Synovitis is estimated by ultrasound examiner using the scoring system graded from 0 to 3. Activity score is estimated on the basis of the examiner’s experience or standardized ultrasound atlases. The method needs trained medical personnel and the result can be affected by a human error. RESULTS: The porotype of a computer-aided diagnostic system and algorithms essential for an analysis of ultrasonic images of finger joints are main scientific output of the MEDUSA project. Medusa Evaluation System prototype uses bone, skin, joint and synovitis area detectors for mutual structural model based evaluation of synovitis. Finally, several algorithms that support the semi-automatic or automatic detection of the bone region were prepared as well as a system that uses the statistical data processing approach in order to automatically localize the regions of interest. CONCLUSIONS: Semiquantitative ultrasound with power Doppler is a reliable and widely used method of assessing synovitis. Activity score is estimated on the basis of the examiner’s experience and the result can be affected by a human error. In this paper we presented the MEDUSA project which is focused on a computer aided diagnostic system that supports an assessment of synovitis severity.