Cargando…

The role of GRIP1 and ephrin B3 in blood pressure control and vascular smooth muscle cell contractility

Several erythropoietin-producing hepatocellular receptor B family (EPHB) and their ligands, ephrinBs (EFNBs), are involved in blood pressure regulation in animal models. We selected 528 single nucleotide polymorphisms (SNPs) within the genes of EPHB6, EFNB2, EFNB3 and GRIP1 in the EPH/EFN signalling...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yujia, Wu, Zenghui, Luo, Hongyu, Peng, Junzheng, Raelson, John, Ehret, Georg B., Munroe, Patricia B., Stoyanova, Ekatherina, Qin, Zhao, Cloutier, Guy, Bradley, W. Edward, Wu, Tao, Shen, Jian-Zhong, Hu, Shenjiang, Wu, Jiangping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5150233/
https://www.ncbi.nlm.nih.gov/pubmed/27941904
http://dx.doi.org/10.1038/srep38976
_version_ 1782474172787589120
author Wang, Yujia
Wu, Zenghui
Luo, Hongyu
Peng, Junzheng
Raelson, John
Ehret, Georg B.
Munroe, Patricia B.
Stoyanova, Ekatherina
Qin, Zhao
Cloutier, Guy
Bradley, W. Edward
Wu, Tao
Shen, Jian-Zhong
Hu, Shenjiang
Wu, Jiangping
author_facet Wang, Yujia
Wu, Zenghui
Luo, Hongyu
Peng, Junzheng
Raelson, John
Ehret, Georg B.
Munroe, Patricia B.
Stoyanova, Ekatherina
Qin, Zhao
Cloutier, Guy
Bradley, W. Edward
Wu, Tao
Shen, Jian-Zhong
Hu, Shenjiang
Wu, Jiangping
author_sort Wang, Yujia
collection PubMed
description Several erythropoietin-producing hepatocellular receptor B family (EPHB) and their ligands, ephrinBs (EFNBs), are involved in blood pressure regulation in animal models. We selected 528 single nucleotide polymorphisms (SNPs) within the genes of EPHB6, EFNB2, EFNB3 and GRIP1 in the EPH/EFN signalling system to query the International Blood Pressure Consortium dataset. A SNP within the glutamate receptor interacting protein 1 (GRIP1) gene presented a p-value of 0.000389, approaching the critical p-value of 0.000302, for association with diastolic blood pressure of 60,396 individuals. According to echocardiography, we found that Efnb3 gene knockout mice showed enhanced constriction in the carotid arteries. In vitro studies revealed that in mouse vascular smooth muscle cells, siRNA knockdown of GRIP1, which is in the EFNB3 reverse signalling pathway, resulted in increased contractility of these cells. These data suggest that molecules in the EPHB/EFNB signalling pathways, specifically EFNB3 and GRIP1, are involved blood pressure regulation.
format Online
Article
Text
id pubmed-5150233
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-51502332016-12-19 The role of GRIP1 and ephrin B3 in blood pressure control and vascular smooth muscle cell contractility Wang, Yujia Wu, Zenghui Luo, Hongyu Peng, Junzheng Raelson, John Ehret, Georg B. Munroe, Patricia B. Stoyanova, Ekatherina Qin, Zhao Cloutier, Guy Bradley, W. Edward Wu, Tao Shen, Jian-Zhong Hu, Shenjiang Wu, Jiangping Sci Rep Article Several erythropoietin-producing hepatocellular receptor B family (EPHB) and their ligands, ephrinBs (EFNBs), are involved in blood pressure regulation in animal models. We selected 528 single nucleotide polymorphisms (SNPs) within the genes of EPHB6, EFNB2, EFNB3 and GRIP1 in the EPH/EFN signalling system to query the International Blood Pressure Consortium dataset. A SNP within the glutamate receptor interacting protein 1 (GRIP1) gene presented a p-value of 0.000389, approaching the critical p-value of 0.000302, for association with diastolic blood pressure of 60,396 individuals. According to echocardiography, we found that Efnb3 gene knockout mice showed enhanced constriction in the carotid arteries. In vitro studies revealed that in mouse vascular smooth muscle cells, siRNA knockdown of GRIP1, which is in the EFNB3 reverse signalling pathway, resulted in increased contractility of these cells. These data suggest that molecules in the EPHB/EFNB signalling pathways, specifically EFNB3 and GRIP1, are involved blood pressure regulation. Nature Publishing Group 2016-12-12 /pmc/articles/PMC5150233/ /pubmed/27941904 http://dx.doi.org/10.1038/srep38976 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Wang, Yujia
Wu, Zenghui
Luo, Hongyu
Peng, Junzheng
Raelson, John
Ehret, Georg B.
Munroe, Patricia B.
Stoyanova, Ekatherina
Qin, Zhao
Cloutier, Guy
Bradley, W. Edward
Wu, Tao
Shen, Jian-Zhong
Hu, Shenjiang
Wu, Jiangping
The role of GRIP1 and ephrin B3 in blood pressure control and vascular smooth muscle cell contractility
title The role of GRIP1 and ephrin B3 in blood pressure control and vascular smooth muscle cell contractility
title_full The role of GRIP1 and ephrin B3 in blood pressure control and vascular smooth muscle cell contractility
title_fullStr The role of GRIP1 and ephrin B3 in blood pressure control and vascular smooth muscle cell contractility
title_full_unstemmed The role of GRIP1 and ephrin B3 in blood pressure control and vascular smooth muscle cell contractility
title_short The role of GRIP1 and ephrin B3 in blood pressure control and vascular smooth muscle cell contractility
title_sort role of grip1 and ephrin b3 in blood pressure control and vascular smooth muscle cell contractility
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5150233/
https://www.ncbi.nlm.nih.gov/pubmed/27941904
http://dx.doi.org/10.1038/srep38976
work_keys_str_mv AT wangyujia theroleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT wuzenghui theroleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT luohongyu theroleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT pengjunzheng theroleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT raelsonjohn theroleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT ehretgeorgb theroleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT munroepatriciab theroleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT stoyanovaekatherina theroleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT qinzhao theroleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT cloutierguy theroleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT bradleywedward theroleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT wutao theroleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT shenjianzhong theroleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT hushenjiang theroleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT wujiangping theroleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT wangyujia roleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT wuzenghui roleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT luohongyu roleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT pengjunzheng roleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT raelsonjohn roleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT ehretgeorgb roleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT munroepatriciab roleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT stoyanovaekatherina roleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT qinzhao roleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT cloutierguy roleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT bradleywedward roleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT wutao roleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT shenjianzhong roleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT hushenjiang roleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility
AT wujiangping roleofgrip1andephrinb3inbloodpressurecontrolandvascularsmoothmusclecellcontractility