Cargando…
Development of an oxide-dispersion-strengthened steel by introducing oxygen carrier compound into the melt aided by a general thermodynamic model
In general, melting process is not a common method for the production of oxide dispersion strengthened (ODS) alloys due to agglomeration and coarsening of oxide particles. However, vacuum casting process has recently been employed as a promising process to produce micro-scale oxide dispersed alloys....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5150259/ https://www.ncbi.nlm.nih.gov/pubmed/27941814 http://dx.doi.org/10.1038/srep38621 |
Sumario: | In general, melting process is not a common method for the production of oxide dispersion strengthened (ODS) alloys due to agglomeration and coarsening of oxide particles. However, vacuum casting process has recently been employed as a promising process to produce micro-scale oxide dispersed alloys. In this paper, we report the process and characterization of in situ formation and uniform dispersion of nano-scale Y-Ti oxide particles in Fe-10Ni-7Mn (wt.%) alloy. The processing route involves a solid-liquid reaction between the added TiO(2) as an oxygen carrier and dissolved yttrium in liquid metal leading to an optimal microstructure with nano-sized dispersed oxide particles. The developed thermodynamic model shows the independence of the final phase constituents from experimental conditions such as melting temperature or vacuum system pressure which offers a general pathway for the manufacture of oxide dispersion strengthened materials. |
---|