Cargando…

Effects of evening light conditions on salivary melatonin of Japanese junior high school students

BACKGROUND: In a previous study, when adult subjects were exposed to a level of 400 lux light for more than 30 min or a level of 300 lux light for more than 2 hours, salivary melatonin concentration during the night dropped lower than when the subjects were exposed to dim illumination. It was sugges...

Descripción completa

Detalles Bibliográficos
Autor principal: Harada, Tetsuo
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC515180/
https://www.ncbi.nlm.nih.gov/pubmed/15304196
http://dx.doi.org/10.1186/1740-3391-2-4
Descripción
Sumario:BACKGROUND: In a previous study, when adult subjects were exposed to a level of 400 lux light for more than 30 min or a level of 300 lux light for more than 2 hours, salivary melatonin concentration during the night dropped lower than when the subjects were exposed to dim illumination. It was suggested that such light exposure in adolescents or children during the first half of subjective night in normal life might decrease the melatonin level and prevent the falling into sleep. However, there has been no actual study on the effects of light exposure in adolescents. METHODS: Effects of exposure to the bright light (2000 lux) from fluorescent light bulbs during a period of three hours from 19:30 to 22:30 in one evening were examined on evening salivary melatonin concentrations from 19:45 to 23:40. The control group was exposed to dim light (60 lux) during these three hours. Both the dim light control group [DLCG] and the bright light experimental group [BLEG] consisted of two female and three male adolescent participants aged 14–15 y. RESULTS: The salivary melatonin level increased rapidly from 3.00 pg/ml at 21:45 to 9.18 pg/ml at 23:40 in DLCG, whereas it remained at less than 1.3 pg/ml for the three hours in BLEG. Melatonin concentration by BLEG at 22:30 of the experimental day was lower than that at the same time on the day before the experimental day, whereas it was significantly higher in the experimental day than on the day before the experimental day in DLCG. CONCLUSIONS: Bright lights of 2000 lux and even moderate lights of 200–300 lux from fluorescent light bulbs can inhibit nocturnal melatonin concentration in adolescents. Ancient Japanese lighting from a traditional Japanese hearth, oil lamp or candle (20–30 lux) could be healthier for children and adolescents because rapid and clear increase in melatonin concentration in blood seems to occur at night under such dim light, thus facilitating a smooth falling into night sleep.