Cargando…
The CHRNA5–A3–B4 Gene Cluster and Smoking: From Discovery to Therapeutics
Genome-wide association studies (GWASs) have identified associations between the CHRNA5–CHRNA3–CHRNB4 gene cluster and smoking heaviness and nicotine dependence. Studies in rodents have described the anatomical localisation and function of the nicotinic acetylcholine receptors (nAChRs) formed by the...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Applied Science Publishing
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5152594/ https://www.ncbi.nlm.nih.gov/pubmed/27871728 http://dx.doi.org/10.1016/j.tins.2016.10.005 |
Sumario: | Genome-wide association studies (GWASs) have identified associations between the CHRNA5–CHRNA3–CHRNB4 gene cluster and smoking heaviness and nicotine dependence. Studies in rodents have described the anatomical localisation and function of the nicotinic acetylcholine receptors (nAChRs) formed by the subunits encoded by this gene cluster. Further investigations that complemented these studies highlighted the variability of individuals’ smoking behaviours and their ability to adjust nicotine intake. GWASs of smoking-related health outcomes have also identified this signal in the CHRNA5–CHRNA3–CHRNB4 gene cluster. This insight underpins approaches to strengthen causal inference in observational data. Combining genetic and mechanistic studies of nicotine dependence and smoking heaviness may reveal novel targets for medication development. Validated targets can inform genetic therapeutic interventions for smoking cessation and tobacco-related diseases. |
---|