Cargando…
A Self-Adaptive Fuzzy c-Means Algorithm for Determining the Optimal Number of Clusters
For the shortcoming of fuzzy c-means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of t...
Autores principales: | Ren, Min, Liu, Peiyu, Wang, Zhihao, Yi, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5153549/ https://www.ncbi.nlm.nih.gov/pubmed/28042291 http://dx.doi.org/10.1155/2016/2647389 |
Ejemplares similares
-
Algorithms for fuzzy clustering: methods in c-means clustering with applications
por: Miyamoto, Sadaaki, et al.
Publicado: (2008) -
Optimization of fuzzy c-means (FCM) clustering in cytology image segmentation using the gray wolf algorithm
por: Mohammdian-khoshnoud, Maryam, et al.
Publicado: (2022) -
The Comparison of Clustering Algorithms K-Means and Fuzzy C-Means for Segmentation Retinal Blood Vessels
por: Wiharto, Wiharto, et al.
Publicado: (2020) -
An Improved Fuzzy c-Means Clustering Algorithm Based on Shadowed Sets and PSO
por: Zhang, Jian, et al.
Publicado: (2014) -
Selection and Optimization of Regional Economic Industrial Structure Based on Fuzzy k-Means Clustering Algorithm
por: Yuan, Honglin, et al.
Publicado: (2022)