Cargando…

Continued Colonization of the Human Genome by Mitochondrial DNA

Integration of mitochondrial DNA fragments into nuclear chromosomes (giving rise to nuclear DNA sequences of mitochondrial origin, or NUMTs) is an ongoing process that shapes nuclear genomes. In yeast this process depends on double-strand-break repair. Since NUMTs lack amplification and specific int...

Descripción completa

Detalles Bibliográficos
Autores principales: Ricchetti, Miria, Tekaia, Fredj, Dujon, Bernard
Formato: Texto
Lenguaje:English
Publicado: Public Library of Science 2004
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC515365/
https://www.ncbi.nlm.nih.gov/pubmed/15361937
http://dx.doi.org/10.1371/journal.pbio.0020273
_version_ 1782121751480631296
author Ricchetti, Miria
Tekaia, Fredj
Dujon, Bernard
author_facet Ricchetti, Miria
Tekaia, Fredj
Dujon, Bernard
author_sort Ricchetti, Miria
collection PubMed
description Integration of mitochondrial DNA fragments into nuclear chromosomes (giving rise to nuclear DNA sequences of mitochondrial origin, or NUMTs) is an ongoing process that shapes nuclear genomes. In yeast this process depends on double-strand-break repair. Since NUMTs lack amplification and specific integration mechanisms, they represent the prototype of exogenous insertions in the nucleus. From sequence analysis of the genome of Homo sapiens, followed by sampling humans from different ethnic backgrounds, and chimpanzees, we have identified 27 NUMTs that are specific to humans and must have colonized human chromosomes in the last 4–6 million years. Thus, we measured the fixation rate of NUMTs in the human genome. Six such NUMTs show insertion polymorphism and provide a useful set of DNA markers for human population genetics. We also found that during recent human evolution, Chromosomes 18 and Y have been more susceptible to colonization by NUMTs. Surprisingly, 23 out of 27 human-specific NUMTs are inserted in known or predicted genes, mainly in introns. Some individuals carry a NUMT insertion in a tumor-suppressor gene and in a putative angiogenesis inhibitor. Therefore in humans, but not in yeast, NUMT integrations preferentially target coding or regulatory sequences. This is indeed the case for novel insertions associated with human diseases and those driven by environmental insults. We thus propose a mutagenic phenomenon that may be responsible for a variety of genetic diseases in humans and suggest that genetic or environmental factors that increase the frequency of chromosome breaks provide the impetus for the continued colonization of the human genome by mitochondrial DNA.
format Text
id pubmed-515365
institution National Center for Biotechnology Information
language English
publishDate 2004
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-5153652004-09-07 Continued Colonization of the Human Genome by Mitochondrial DNA Ricchetti, Miria Tekaia, Fredj Dujon, Bernard PLoS Biol Research Article Integration of mitochondrial DNA fragments into nuclear chromosomes (giving rise to nuclear DNA sequences of mitochondrial origin, or NUMTs) is an ongoing process that shapes nuclear genomes. In yeast this process depends on double-strand-break repair. Since NUMTs lack amplification and specific integration mechanisms, they represent the prototype of exogenous insertions in the nucleus. From sequence analysis of the genome of Homo sapiens, followed by sampling humans from different ethnic backgrounds, and chimpanzees, we have identified 27 NUMTs that are specific to humans and must have colonized human chromosomes in the last 4–6 million years. Thus, we measured the fixation rate of NUMTs in the human genome. Six such NUMTs show insertion polymorphism and provide a useful set of DNA markers for human population genetics. We also found that during recent human evolution, Chromosomes 18 and Y have been more susceptible to colonization by NUMTs. Surprisingly, 23 out of 27 human-specific NUMTs are inserted in known or predicted genes, mainly in introns. Some individuals carry a NUMT insertion in a tumor-suppressor gene and in a putative angiogenesis inhibitor. Therefore in humans, but not in yeast, NUMT integrations preferentially target coding or regulatory sequences. This is indeed the case for novel insertions associated with human diseases and those driven by environmental insults. We thus propose a mutagenic phenomenon that may be responsible for a variety of genetic diseases in humans and suggest that genetic or environmental factors that increase the frequency of chromosome breaks provide the impetus for the continued colonization of the human genome by mitochondrial DNA. Public Library of Science 2004-09 2004-09-07 /pmc/articles/PMC515365/ /pubmed/15361937 http://dx.doi.org/10.1371/journal.pbio.0020273 Text en Copyright: © 2004 Ricchetti et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Ricchetti, Miria
Tekaia, Fredj
Dujon, Bernard
Continued Colonization of the Human Genome by Mitochondrial DNA
title Continued Colonization of the Human Genome by Mitochondrial DNA
title_full Continued Colonization of the Human Genome by Mitochondrial DNA
title_fullStr Continued Colonization of the Human Genome by Mitochondrial DNA
title_full_unstemmed Continued Colonization of the Human Genome by Mitochondrial DNA
title_short Continued Colonization of the Human Genome by Mitochondrial DNA
title_sort continued colonization of the human genome by mitochondrial dna
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC515365/
https://www.ncbi.nlm.nih.gov/pubmed/15361937
http://dx.doi.org/10.1371/journal.pbio.0020273
work_keys_str_mv AT ricchettimiria continuedcolonizationofthehumangenomebymitochondrialdna
AT tekaiafredj continuedcolonizationofthehumangenomebymitochondrialdna
AT dujonbernard continuedcolonizationofthehumangenomebymitochondrialdna