Cargando…
Complex systems analysis of bladder cancer susceptibility reveals a role for decarboxylase activity in two genome-wide association studies
BACKGROUND: Bladder cancer is common disease with a complex etiology that is likely due to many different genetic and environmental factors. The goal of this study was to embrace this complexity using a bioinformatics analysis pipeline designed to use machine learning to measure synergistic interact...
Autores principales: | Cheng, Samantha, Andrew, Angeline S., Andrews, Peter C., Moore, Jason H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5154053/ https://www.ncbi.nlm.nih.gov/pubmed/27999618 http://dx.doi.org/10.1186/s13040-016-0119-z |
Ejemplares similares
-
Functional genomics annotation of a statistical epistasis network associated with bladder cancer susceptibility
por: Hu, Ting, et al.
Publicado: (2014) -
Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS
por: Kim, Nora Chung, et al.
Publicado: (2012) -
Role of genetic heterogeneity and epistasis in bladder cancer susceptibility and outcome: a learning classifier system approach
por: Urbanowicz, Ryan John, et al.
Publicado: (2013) -
A conserved oxalyl-coenzyme A decarboxylase in oxalate catabolism
por: Cheng, Ninghui, et al.
Publicado: (2022) -
Genome‐wide scans between two honeybee populations reveal putative signatures of human‐mediated selection
por: Parejo, M., et al.
Publicado: (2017)