Cargando…
Measuring prefrontal cortical activity during dual task walking in patients with Parkinson’s disease: feasibility of using a new portable fNIRS device
BACKGROUND: Many patients with Parkinson’s disease (PD) have difficulties in performing a second task during walking (i.e., dual task walking). Functional near-infrared spectroscopy (fNIRS) is a promising approach to study the presumed contribution of dysfunction within the prefrontal cortex (PFC) t...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5154104/ https://www.ncbi.nlm.nih.gov/pubmed/27965875 http://dx.doi.org/10.1186/s40814-016-0099-2 |
_version_ | 1782474818976743424 |
---|---|
author | Nieuwhof, Freek Reelick, Miriam F. Maidan, Inbal Mirelman, Anat Hausdorff, Jeffrey M. Olde Rikkert, Marcel G.M. Bloem, Bastiaan R. Muthalib, Makii Claassen, Jurgen A.H.R. |
author_facet | Nieuwhof, Freek Reelick, Miriam F. Maidan, Inbal Mirelman, Anat Hausdorff, Jeffrey M. Olde Rikkert, Marcel G.M. Bloem, Bastiaan R. Muthalib, Makii Claassen, Jurgen A.H.R. |
author_sort | Nieuwhof, Freek |
collection | PubMed |
description | BACKGROUND: Many patients with Parkinson’s disease (PD) have difficulties in performing a second task during walking (i.e., dual task walking). Functional near-infrared spectroscopy (fNIRS) is a promising approach to study the presumed contribution of dysfunction within the prefrontal cortex (PFC) to such difficulties. In this pilot study, we examined the feasibility of using a new portable and wireless fNIRS device to measure PFC activity during different dual task walking protocols in PD. Specifically, we tested whether PD patients were able to perform the protocol and whether we were able to measure the typical fNIRS signal of neuronal activity. METHODS: We included 14 PD patients (age 71.2 ± 5.4 years, Hoehn and Yahr stage II/III). The protocol consisted of five repetitions of three conditions: walking while (i) counting forwards, (ii) serially subtracting, and (iii) reciting digit spans. Ability to complete this protocol, perceived exertion, burden of the fNIRS devices, and concentrations of oxygenated (O(2)Hb) and deoxygenated (HHb) hemoglobin from the left and right PFC were measured. RESULTS: Two participants were unable to complete the protocol due to fatigue and mobility safety concerns. The remaining 12 participants experienced no burden from the two fNIRS devices and completed the protocol with ease. Bilateral PFC O(2)Hb concentrations increased during walking while serially subtracting (left PFC 0.46 μmol/L, 95 % confidence interval (CI) 0.12–0.81, right PFC 0.49 μmol/L, 95 % CI 0.14–0.84) and reciting digit spans (left PFC 0.36 μmol/L, 95 % CI 0.03–0.70, right PFC 0.44 μmol/L, 95 % CI 0.09–0.78) when compared to rest. HHb concentrations did not differ between the walking tasks and rest. CONCLUSIONS: These findings suggest that a new wireless fNIRS device is a feasible measure of PFC activity in PD during dual task walking. Future studies should reduce the level of noise and inter-individual variability to enable measuring differences in PFC activity between different dual walking conditions and across health states. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40814-016-0099-2) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5154104 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-51541042016-12-13 Measuring prefrontal cortical activity during dual task walking in patients with Parkinson’s disease: feasibility of using a new portable fNIRS device Nieuwhof, Freek Reelick, Miriam F. Maidan, Inbal Mirelman, Anat Hausdorff, Jeffrey M. Olde Rikkert, Marcel G.M. Bloem, Bastiaan R. Muthalib, Makii Claassen, Jurgen A.H.R. Pilot Feasibility Stud Research BACKGROUND: Many patients with Parkinson’s disease (PD) have difficulties in performing a second task during walking (i.e., dual task walking). Functional near-infrared spectroscopy (fNIRS) is a promising approach to study the presumed contribution of dysfunction within the prefrontal cortex (PFC) to such difficulties. In this pilot study, we examined the feasibility of using a new portable and wireless fNIRS device to measure PFC activity during different dual task walking protocols in PD. Specifically, we tested whether PD patients were able to perform the protocol and whether we were able to measure the typical fNIRS signal of neuronal activity. METHODS: We included 14 PD patients (age 71.2 ± 5.4 years, Hoehn and Yahr stage II/III). The protocol consisted of five repetitions of three conditions: walking while (i) counting forwards, (ii) serially subtracting, and (iii) reciting digit spans. Ability to complete this protocol, perceived exertion, burden of the fNIRS devices, and concentrations of oxygenated (O(2)Hb) and deoxygenated (HHb) hemoglobin from the left and right PFC were measured. RESULTS: Two participants were unable to complete the protocol due to fatigue and mobility safety concerns. The remaining 12 participants experienced no burden from the two fNIRS devices and completed the protocol with ease. Bilateral PFC O(2)Hb concentrations increased during walking while serially subtracting (left PFC 0.46 μmol/L, 95 % confidence interval (CI) 0.12–0.81, right PFC 0.49 μmol/L, 95 % CI 0.14–0.84) and reciting digit spans (left PFC 0.36 μmol/L, 95 % CI 0.03–0.70, right PFC 0.44 μmol/L, 95 % CI 0.09–0.78) when compared to rest. HHb concentrations did not differ between the walking tasks and rest. CONCLUSIONS: These findings suggest that a new wireless fNIRS device is a feasible measure of PFC activity in PD during dual task walking. Future studies should reduce the level of noise and inter-individual variability to enable measuring differences in PFC activity between different dual walking conditions and across health states. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40814-016-0099-2) contains supplementary material, which is available to authorized users. BioMed Central 2016-09-23 /pmc/articles/PMC5154104/ /pubmed/27965875 http://dx.doi.org/10.1186/s40814-016-0099-2 Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Nieuwhof, Freek Reelick, Miriam F. Maidan, Inbal Mirelman, Anat Hausdorff, Jeffrey M. Olde Rikkert, Marcel G.M. Bloem, Bastiaan R. Muthalib, Makii Claassen, Jurgen A.H.R. Measuring prefrontal cortical activity during dual task walking in patients with Parkinson’s disease: feasibility of using a new portable fNIRS device |
title | Measuring prefrontal cortical activity during dual task walking in patients with Parkinson’s disease: feasibility of using a new portable fNIRS device |
title_full | Measuring prefrontal cortical activity during dual task walking in patients with Parkinson’s disease: feasibility of using a new portable fNIRS device |
title_fullStr | Measuring prefrontal cortical activity during dual task walking in patients with Parkinson’s disease: feasibility of using a new portable fNIRS device |
title_full_unstemmed | Measuring prefrontal cortical activity during dual task walking in patients with Parkinson’s disease: feasibility of using a new portable fNIRS device |
title_short | Measuring prefrontal cortical activity during dual task walking in patients with Parkinson’s disease: feasibility of using a new portable fNIRS device |
title_sort | measuring prefrontal cortical activity during dual task walking in patients with parkinson’s disease: feasibility of using a new portable fnirs device |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5154104/ https://www.ncbi.nlm.nih.gov/pubmed/27965875 http://dx.doi.org/10.1186/s40814-016-0099-2 |
work_keys_str_mv | AT nieuwhoffreek measuringprefrontalcorticalactivityduringdualtaskwalkinginpatientswithparkinsonsdiseasefeasibilityofusinganewportablefnirsdevice AT reelickmiriamf measuringprefrontalcorticalactivityduringdualtaskwalkinginpatientswithparkinsonsdiseasefeasibilityofusinganewportablefnirsdevice AT maidaninbal measuringprefrontalcorticalactivityduringdualtaskwalkinginpatientswithparkinsonsdiseasefeasibilityofusinganewportablefnirsdevice AT mirelmananat measuringprefrontalcorticalactivityduringdualtaskwalkinginpatientswithparkinsonsdiseasefeasibilityofusinganewportablefnirsdevice AT hausdorffjeffreym measuringprefrontalcorticalactivityduringdualtaskwalkinginpatientswithparkinsonsdiseasefeasibilityofusinganewportablefnirsdevice AT olderikkertmarcelgm measuringprefrontalcorticalactivityduringdualtaskwalkinginpatientswithparkinsonsdiseasefeasibilityofusinganewportablefnirsdevice AT bloembastiaanr measuringprefrontalcorticalactivityduringdualtaskwalkinginpatientswithparkinsonsdiseasefeasibilityofusinganewportablefnirsdevice AT muthalibmakii measuringprefrontalcorticalactivityduringdualtaskwalkinginpatientswithparkinsonsdiseasefeasibilityofusinganewportablefnirsdevice AT claassenjurgenahr measuringprefrontalcorticalactivityduringdualtaskwalkinginpatientswithparkinsonsdiseasefeasibilityofusinganewportablefnirsdevice |