Cargando…
Mining textural knowledge in biological images: Applications, methods and trends
Texture analysis is a major task in many areas of computer vision and pattern recognition, including biological imaging. Indeed, visual textures can be exploited to distinguish specific tissues or cells in a biological sample, to highlight chemical reactions between molecules, as well as to detect s...
Autores principales: | Di Cataldo, Santa, Ficarra, Elisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5155047/ https://www.ncbi.nlm.nih.gov/pubmed/27994798 http://dx.doi.org/10.1016/j.csbj.2016.11.002 |
Ejemplares similares
-
Exploiting generative self-supervised learning for the assessment of biological images with lack of annotations
por: Mascolini, Alessio, et al.
Publicado: (2022) -
Exploiting Gene Expression Profiles for the Automated Prediction of Connectivity between Brain Regions
por: Roberti, Ilaria, et al.
Publicado: (2019) -
A Deep Learning Approach to the Screening of Oncogenic Gene Fusions in Humans
por: Lovino, Marta, et al.
Publicado: (2019) -
BioSeqZip: a collapser of NGS redundant reads for the optimization of sequence analysis
por: Urgese, Gianvito, et al.
Publicado: (2020) -
DEEPrior: a deep learning tool for the prioritization of gene fusions
por: Lovino, Marta, et al.
Publicado: (2020)