Cargando…

A room-temperature magnetic semiconductor from a ferromagnetic metallic glass

Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase th...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Wenjian, Zhang, Hongxia, Shi, Jin-an, Wang, Zhongchang, Song, Cheng, Wang, Xiangrong, Lu, Siyuan, Zhou, Xiangjun, Gu, Lin, Louzguine-Luzgin, Dmitri V., Chen, Mingwei, Yao, Kefu, Chen, Na
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5155142/
https://www.ncbi.nlm.nih.gov/pubmed/27929059
http://dx.doi.org/10.1038/ncomms13497
_version_ 1782474949636653056
author Liu, Wenjian
Zhang, Hongxia
Shi, Jin-an
Wang, Zhongchang
Song, Cheng
Wang, Xiangrong
Lu, Siyuan
Zhou, Xiangjun
Gu, Lin
Louzguine-Luzgin, Dmitri V.
Chen, Mingwei
Yao, Kefu
Chen, Na
author_facet Liu, Wenjian
Zhang, Hongxia
Shi, Jin-an
Wang, Zhongchang
Song, Cheng
Wang, Xiangrong
Lu, Siyuan
Zhou, Xiangjun
Gu, Lin
Louzguine-Luzgin, Dmitri V.
Chen, Mingwei
Yao, Kefu
Chen, Na
author_sort Liu, Wenjian
collection PubMed
description Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III–V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co(28.6)Fe(12.4)Ta(4.3)B(8.7)O(46) magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p–n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm(2) V(−1) s(−1). Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities.
format Online
Article
Text
id pubmed-5155142
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-51551422016-12-21 A room-temperature magnetic semiconductor from a ferromagnetic metallic glass Liu, Wenjian Zhang, Hongxia Shi, Jin-an Wang, Zhongchang Song, Cheng Wang, Xiangrong Lu, Siyuan Zhou, Xiangjun Gu, Lin Louzguine-Luzgin, Dmitri V. Chen, Mingwei Yao, Kefu Chen, Na Nat Commun Article Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III–V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co(28.6)Fe(12.4)Ta(4.3)B(8.7)O(46) magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p–n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm(2) V(−1) s(−1). Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities. Nature Publishing Group 2016-12-08 /pmc/articles/PMC5155142/ /pubmed/27929059 http://dx.doi.org/10.1038/ncomms13497 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Liu, Wenjian
Zhang, Hongxia
Shi, Jin-an
Wang, Zhongchang
Song, Cheng
Wang, Xiangrong
Lu, Siyuan
Zhou, Xiangjun
Gu, Lin
Louzguine-Luzgin, Dmitri V.
Chen, Mingwei
Yao, Kefu
Chen, Na
A room-temperature magnetic semiconductor from a ferromagnetic metallic glass
title A room-temperature magnetic semiconductor from a ferromagnetic metallic glass
title_full A room-temperature magnetic semiconductor from a ferromagnetic metallic glass
title_fullStr A room-temperature magnetic semiconductor from a ferromagnetic metallic glass
title_full_unstemmed A room-temperature magnetic semiconductor from a ferromagnetic metallic glass
title_short A room-temperature magnetic semiconductor from a ferromagnetic metallic glass
title_sort room-temperature magnetic semiconductor from a ferromagnetic metallic glass
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5155142/
https://www.ncbi.nlm.nih.gov/pubmed/27929059
http://dx.doi.org/10.1038/ncomms13497
work_keys_str_mv AT liuwenjian aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT zhanghongxia aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT shijinan aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT wangzhongchang aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT songcheng aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT wangxiangrong aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT lusiyuan aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT zhouxiangjun aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT gulin aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT louzguineluzgindmitriv aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT chenmingwei aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT yaokefu aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT chenna aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT liuwenjian roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT zhanghongxia roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT shijinan roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT wangzhongchang roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT songcheng roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT wangxiangrong roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT lusiyuan roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT zhouxiangjun roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT gulin roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT louzguineluzgindmitriv roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT chenmingwei roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT yaokefu roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass
AT chenna roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass