Cargando…
A room-temperature magnetic semiconductor from a ferromagnetic metallic glass
Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase th...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5155142/ https://www.ncbi.nlm.nih.gov/pubmed/27929059 http://dx.doi.org/10.1038/ncomms13497 |
_version_ | 1782474949636653056 |
---|---|
author | Liu, Wenjian Zhang, Hongxia Shi, Jin-an Wang, Zhongchang Song, Cheng Wang, Xiangrong Lu, Siyuan Zhou, Xiangjun Gu, Lin Louzguine-Luzgin, Dmitri V. Chen, Mingwei Yao, Kefu Chen, Na |
author_facet | Liu, Wenjian Zhang, Hongxia Shi, Jin-an Wang, Zhongchang Song, Cheng Wang, Xiangrong Lu, Siyuan Zhou, Xiangjun Gu, Lin Louzguine-Luzgin, Dmitri V. Chen, Mingwei Yao, Kefu Chen, Na |
author_sort | Liu, Wenjian |
collection | PubMed |
description | Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III–V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co(28.6)Fe(12.4)Ta(4.3)B(8.7)O(46) magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p–n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm(2) V(−1) s(−1). Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities. |
format | Online Article Text |
id | pubmed-5155142 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-51551422016-12-21 A room-temperature magnetic semiconductor from a ferromagnetic metallic glass Liu, Wenjian Zhang, Hongxia Shi, Jin-an Wang, Zhongchang Song, Cheng Wang, Xiangrong Lu, Siyuan Zhou, Xiangjun Gu, Lin Louzguine-Luzgin, Dmitri V. Chen, Mingwei Yao, Kefu Chen, Na Nat Commun Article Emerging for future spintronic/electronic applications, magnetic semiconductors have stimulated intense interest due to their promises for new functionalities and device concepts. So far, the so-called diluted magnetic semiconductors attract many attentions, yet it remains challenging to increase their Curie temperatures above room temperature, particularly those based on III–V semiconductors. In contrast to the concept of doping magnetic elements into conventional semiconductors to make diluted magnetic semiconductors, here we propose to oxidize originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. We introduce oxygen into a ferromagnetic metallic glass to form a Co(28.6)Fe(12.4)Ta(4.3)B(8.7)O(46) magnetic semiconductor with a Curie temperature above 600 K. The demonstration of p–n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflects its p-type semiconducting character, with a mobility of 0.1 cm(2) V(−1) s(−1). Our findings may pave a new way to realize high Curie temperature magnetic semiconductors with unusual multifunctionalities. Nature Publishing Group 2016-12-08 /pmc/articles/PMC5155142/ /pubmed/27929059 http://dx.doi.org/10.1038/ncomms13497 Text en Copyright © 2016, The Author(s) http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Liu, Wenjian Zhang, Hongxia Shi, Jin-an Wang, Zhongchang Song, Cheng Wang, Xiangrong Lu, Siyuan Zhou, Xiangjun Gu, Lin Louzguine-Luzgin, Dmitri V. Chen, Mingwei Yao, Kefu Chen, Na A room-temperature magnetic semiconductor from a ferromagnetic metallic glass |
title | A room-temperature magnetic semiconductor from a ferromagnetic metallic glass |
title_full | A room-temperature magnetic semiconductor from a ferromagnetic metallic glass |
title_fullStr | A room-temperature magnetic semiconductor from a ferromagnetic metallic glass |
title_full_unstemmed | A room-temperature magnetic semiconductor from a ferromagnetic metallic glass |
title_short | A room-temperature magnetic semiconductor from a ferromagnetic metallic glass |
title_sort | room-temperature magnetic semiconductor from a ferromagnetic metallic glass |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5155142/ https://www.ncbi.nlm.nih.gov/pubmed/27929059 http://dx.doi.org/10.1038/ncomms13497 |
work_keys_str_mv | AT liuwenjian aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT zhanghongxia aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT shijinan aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT wangzhongchang aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT songcheng aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT wangxiangrong aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT lusiyuan aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT zhouxiangjun aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT gulin aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT louzguineluzgindmitriv aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT chenmingwei aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT yaokefu aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT chenna aroomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT liuwenjian roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT zhanghongxia roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT shijinan roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT wangzhongchang roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT songcheng roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT wangxiangrong roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT lusiyuan roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT zhouxiangjun roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT gulin roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT louzguineluzgindmitriv roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT chenmingwei roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT yaokefu roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass AT chenna roomtemperaturemagneticsemiconductorfromaferromagneticmetallicglass |