Cargando…
Thioredoxin-interacting protein regulates haematopoietic stem cell ageing and rejuvenation by inhibiting p38 kinase activity
Ageing is a natural process in living organisms throughout their lifetime, and most elderly people suffer from ageing-associated diseases. One suggested way to tackle such diseases is to rejuvenate stem cells, which also undergo ageing. Here we report that the thioredoxin-interacting protein (TXNIP)...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5155146/ https://www.ncbi.nlm.nih.gov/pubmed/27929088 http://dx.doi.org/10.1038/ncomms13674 |
Sumario: | Ageing is a natural process in living organisms throughout their lifetime, and most elderly people suffer from ageing-associated diseases. One suggested way to tackle such diseases is to rejuvenate stem cells, which also undergo ageing. Here we report that the thioredoxin-interacting protein (TXNIP)-p38 mitogen-activated protein kinase (p38) axis regulates the ageing of haematopoietic stem cells (HSCs), by causing a higher frequency of long-term HSCs, lineage skewing, a decrease in engraftment, an increase in reactive oxygen species and loss of Cdc42 polarity. TXNIP inhibits p38 activity via direct interaction in HSCs. Furthermore, cell-penetrating peptide (CPP)-conjugated peptide derived from the TXNIP-p38 interaction motif inhibits p38 activity via this docking interaction. This peptide dramatically rejuvenates aged HSCs in vitro and in vivo. Our findings suggest that the TXNIP-p38 axis acts as a regulatory mechanism in HSC ageing and indicate the potent therapeutic potential of using CPP-conjugated peptide to rejuvenate aged HSCs. |
---|