Cargando…

Enhanced UV Emission From Silver/ZnO And Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, And Optically Stimulated Luminescence

The optical properties of core-shell nanoparticles consisting of a ZnO shell grown on Ag and Au nanoparticle cores by a solution method have been investigated. Both the ZnO/Ag and ZnO/Au particles exhibit strongly enhanced near-band-edge UV emission from the ZnO when excited at 325 nm. Furthermore,...

Descripción completa

Detalles Bibliográficos
Autores principales: Guidelli, E. J., Baffa, O., Clarke, D. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5155625/
https://www.ncbi.nlm.nih.gov/pubmed/26365945
http://dx.doi.org/10.1038/srep14004
Descripción
Sumario:The optical properties of core-shell nanoparticles consisting of a ZnO shell grown on Ag and Au nanoparticle cores by a solution method have been investigated. Both the ZnO/Ag and ZnO/Au particles exhibit strongly enhanced near-band-edge UV emission from the ZnO when excited at 325 nm. Furthermore, the UV intensity increases with the metal nanoparticle concentration, with 60-fold and 17-fold enhancements for the ZnO/Ag and ZnO/Au, core-shell nanoparticles respectively. Accompanying the increase in UV emission, there is a corresponding decrease in the broad band defect emission with nanoparticle concentration. Nonetheless, the broad band luminescence increases with laser power. The results are consistent with enhanced exciton emission in the ZnO shells due to coupling with surface plasmon resonance of the metal nanoparticles. Luminescence measurements during and after exposure to X-rays also exhibit enhanced UV luminescence. These observations suggest that metal nanoparticles may be suitable for enhancing optical detection of ionizing radiation.