Cargando…
Relationship of Iron Deficiency and Serum Ferritin Levels with Pulmonary Hypertension: The Jackson Heart Study
PURPOSE: Iron deficiency is prevalent in idiopathic pulmonary arterial hypertension (IPAH), but whether iron deficiency or ferritin levels are associated with pulmonary hypertension (PH) in the general population is unknown. METHODS: We performed a cross-sectional analysis of data on iron deficiency...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156429/ https://www.ncbi.nlm.nih.gov/pubmed/27973582 http://dx.doi.org/10.1371/journal.pone.0167987 |
Sumario: | PURPOSE: Iron deficiency is prevalent in idiopathic pulmonary arterial hypertension (IPAH), but whether iron deficiency or ferritin levels are associated with pulmonary hypertension (PH) in the general population is unknown. METHODS: We performed a cross-sectional analysis of data on iron deficiency (exposure), and PH (pulmonary artery systolic pressure>40mmHg on echocardiogram) (outcome) on subjects with complete data on exposures and outcomes as well as covariates (n = 2,800) enrolled in the Jackson Heart Study, a longitudinal prospective observational cohort study of heart disease in African-Americans from Jackson, Mississippi. Iron deficiency was defined as a serum ferritin level < 15ng/mL (females); < 30ng/mL (males). We determined crude prevalence ratios (PRs) for PH in iron deficient versus non-iron deficient groups using modified Poisson regression modeling. We also analyzed the prevalence of PH by sex-specific quartiles of ferritin (Females ≤ 47ng/mL; > 47ng/mL– 95ng/mL; > 95ng/mL– 171ng/mL; > 171ng/mL; Males ≤ 110ng/mL; > 110ng/mL– 182ng/mL; > 182ng/mL– 294ng/mL; > 294ng/mL), using the same modeling technique with the lowest quartile as the referent. RESULTS: Median pulmonary artery systolic pressure was 27mmHg (interquartile range 23-31mmHg) in the study cohort. 147 subjects (5.2%) had PH and 140 (5.0%) had iron deficiency. However, of the 147 subjects with PH, only 4 were also iron deficient. The crude PH PR was 0.5 (95% CI 0.2–1.4) in iron-deficiency compared to non-deficient. In analysis by quartiles of ferritin, adjusting for age and sex, there was no evidence of association with PH in quartiles 2 (PR 1.1, 95% CI 0.7–1.6), 3 (PR 0.8, 95% CI 0.5–1.3), or 4 (PR 0.8, 95% CI 0.5–1.2) compared with quartile 1 (referent group, PR 1). Further analyses of the relationship between PH and ferritin as a log-transformed continuous variable or by quartiles of serum iron showed similar results. CONCLUSIONS: In the Jackson Heart Study, the prevalence of PH was similar in iron-deficient and non-iron deficient subjects. There was no evidence of association between ferritin (or serum iron) levels and PH. CLINICAL IMPLICATIONS: Iron deficiency has been associated with IPAH, a rare disorder. However, in a large community-based sample of African-Americans, there was no evidence that iron deficiency or low iron levels were associated with PH. |
---|