Cargando…
Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening
Ethylene is crucial in climacteric fruit ripening. The ethylene signal pathway regulates several physiological alterations such as softening, carotenoid accumulation and sugar level reduction, and production of volatile compounds. All these physiological processes are controlled by numerous genes an...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156437/ https://www.ncbi.nlm.nih.gov/pubmed/27973616 http://dx.doi.org/10.1371/journal.pone.0168287 |
_version_ | 1782481269387427840 |
---|---|
author | Wang, Rui-Heng Yuan, Xin-Yu Meng, Lan-Huan Zhu, Ben-Zhong Zhu, Hong-liang Luo, Yun-Bo Fu, Da-Qi |
author_facet | Wang, Rui-Heng Yuan, Xin-Yu Meng, Lan-Huan Zhu, Ben-Zhong Zhu, Hong-liang Luo, Yun-Bo Fu, Da-Qi |
author_sort | Wang, Rui-Heng |
collection | PubMed |
description | Ethylene is crucial in climacteric fruit ripening. The ethylene signal pathway regulates several physiological alterations such as softening, carotenoid accumulation and sugar level reduction, and production of volatile compounds. All these physiological processes are controlled by numerous genes and their expression simultaneously changes at the onset of ripening. Ethylene insensitive 2 (EIN2) is a key component for ethylene signal transduction, and its mutation causes ethylene insensitivity. In tomato, silencing SlEIN2 resulted in a non-ripening phenotype and low ethylene production. RNA sequencing of SlEIN2-silenced and wild type tomato, and differential gene expression analyses, indicated that silencing SlEIN2 caused changes in more than 4,000 genes, including those related to photosynthesis, defense, and secondary metabolism. The relative expression level of 28 genes covering ripening-associated transcription factors, ethylene biosynthesis, ethylene signal pathway, chlorophyll binding proteins, lycopene and aroma biosynthesis, and defense pathway, showed that SlEIN2 influences ripening inhibitor (RIN) in a feedback loop, thus controlling the expression of several other genes. SlEIN2 regulates many aspects of fruit ripening, and is a key factor in the ethylene signal transduction pathway. Silencing SlEIN2 ultimately results in lycopene biosynthesis inhibition, which is the reason why tomato does not turn red, and this gene also affects the expression of several defense-associated genes. Although SlEIN2-silenced and green wild type fruits are similar in appearance, their metabolism is significantly different at the molecular level. |
format | Online Article Text |
id | pubmed-5156437 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-51564372016-12-28 Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening Wang, Rui-Heng Yuan, Xin-Yu Meng, Lan-Huan Zhu, Ben-Zhong Zhu, Hong-liang Luo, Yun-Bo Fu, Da-Qi PLoS One Research Article Ethylene is crucial in climacteric fruit ripening. The ethylene signal pathway regulates several physiological alterations such as softening, carotenoid accumulation and sugar level reduction, and production of volatile compounds. All these physiological processes are controlled by numerous genes and their expression simultaneously changes at the onset of ripening. Ethylene insensitive 2 (EIN2) is a key component for ethylene signal transduction, and its mutation causes ethylene insensitivity. In tomato, silencing SlEIN2 resulted in a non-ripening phenotype and low ethylene production. RNA sequencing of SlEIN2-silenced and wild type tomato, and differential gene expression analyses, indicated that silencing SlEIN2 caused changes in more than 4,000 genes, including those related to photosynthesis, defense, and secondary metabolism. The relative expression level of 28 genes covering ripening-associated transcription factors, ethylene biosynthesis, ethylene signal pathway, chlorophyll binding proteins, lycopene and aroma biosynthesis, and defense pathway, showed that SlEIN2 influences ripening inhibitor (RIN) in a feedback loop, thus controlling the expression of several other genes. SlEIN2 regulates many aspects of fruit ripening, and is a key factor in the ethylene signal transduction pathway. Silencing SlEIN2 ultimately results in lycopene biosynthesis inhibition, which is the reason why tomato does not turn red, and this gene also affects the expression of several defense-associated genes. Although SlEIN2-silenced and green wild type fruits are similar in appearance, their metabolism is significantly different at the molecular level. Public Library of Science 2016-12-14 /pmc/articles/PMC5156437/ /pubmed/27973616 http://dx.doi.org/10.1371/journal.pone.0168287 Text en © 2016 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Wang, Rui-Heng Yuan, Xin-Yu Meng, Lan-Huan Zhu, Ben-Zhong Zhu, Hong-liang Luo, Yun-Bo Fu, Da-Qi Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening |
title | Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening |
title_full | Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening |
title_fullStr | Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening |
title_full_unstemmed | Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening |
title_short | Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening |
title_sort | transcriptome analysis provides a preliminary regulation route of the ethylene signal transduction component, slein2, during tomato ripening |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156437/ https://www.ncbi.nlm.nih.gov/pubmed/27973616 http://dx.doi.org/10.1371/journal.pone.0168287 |
work_keys_str_mv | AT wangruiheng transcriptomeanalysisprovidesapreliminaryregulationrouteoftheethylenesignaltransductioncomponentslein2duringtomatoripening AT yuanxinyu transcriptomeanalysisprovidesapreliminaryregulationrouteoftheethylenesignaltransductioncomponentslein2duringtomatoripening AT menglanhuan transcriptomeanalysisprovidesapreliminaryregulationrouteoftheethylenesignaltransductioncomponentslein2duringtomatoripening AT zhubenzhong transcriptomeanalysisprovidesapreliminaryregulationrouteoftheethylenesignaltransductioncomponentslein2duringtomatoripening AT zhuhongliang transcriptomeanalysisprovidesapreliminaryregulationrouteoftheethylenesignaltransductioncomponentslein2duringtomatoripening AT luoyunbo transcriptomeanalysisprovidesapreliminaryregulationrouteoftheethylenesignaltransductioncomponentslein2duringtomatoripening AT fudaqi transcriptomeanalysisprovidesapreliminaryregulationrouteoftheethylenesignaltransductioncomponentslein2duringtomatoripening |