Cargando…
Comparison of Astigmatism Induced by Combined Inferior Oblique Anterior Transposition Procedure and Lateral Rectus Recession Alone
PURPOSE: The purpose of this study is to compare the magnitude and axis of astigmatism induced by a combined inferior oblique (IO) anterior transposition procedure with lateral rectus (LR) recession versus LR recession alone. METHODS: Forty-six patients were retrospectively analyzed. The subjects we...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Ophthalmological Society
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156620/ https://www.ncbi.nlm.nih.gov/pubmed/27980365 http://dx.doi.org/10.3341/kjo.2016.30.6.459 |
Sumario: | PURPOSE: The purpose of this study is to compare the magnitude and axis of astigmatism induced by a combined inferior oblique (IO) anterior transposition procedure with lateral rectus (LR) recession versus LR recession alone. METHODS: Forty-six patients were retrospectively analyzed. The subjects were divided into two groups: those having concurrent inferior oblique muscle overaction (IOOA) and intermittent exotropia (group 1, 20 patients) and those having only intermittent exotropia as a control (group 2, 26 patients). Group 1 underwent combined anterior transposition of IO with LR recession and group 2 underwent LR recession alone. Induced astigmatism was defined as the difference between preoperative and postoperative astigmatism using double-angle vector analysis. Cylinder power, axis of induced astigmatism, and spherical equivalent were analyzed at 1 week, 1 month, and 3 months after surgery. RESULTS: Larger changes in the axis of induced astigmatism were observed in group 1, with 4.5° incyclotorsion, than in group 2 at 1 week after surgery (axis, 84.5° vs. 91°; p < 0.001). However, there was no statistically significant inter-group difference thereafter. Relaxation and rapid regression in the incyclotorsion of induced astigmatism were observed over-time. Spherical equivalent significantly decreased postoperatively at 1 month in both groups, indicating a myopic shift (p = 0.011 for group 1 and p = 0.019 for group 2) but did not show significant differences at 3 months after surgery (p = 0.107 for group 1 and p = 0.760 for group 2). CONCLUSIONS: Combined IO anterior transposition procedures caused an increased change in the axis of induced astigmatism, including temporary incyclotorsion, during the first week after surgery. However, this significant difference was not maintained thereafter. Thus, combined IO surgery with LR recession does not seem to produce a sustained astigmatic change, which can be a potential risk factor of postoperative amblyopia or diplopia compared with LR recession alone. |
---|