Cargando…

Construction of a Pan-Genome Allele Database of Salmonella enterica Serovar Enteritidis for Molecular Subtyping and Disease Cluster Identification

We built a pan-genome allele database with 395 genomes of Salmonella enterica serovar Enteritidis and developed computer tools for analysis of whole genome sequencing (WGS) data of bacterial isolates for disease cluster identification. A web server (http://wgmlst.imst.nsysu.edu.tw) was set up with t...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yen-Yi, Chen, Chih-Chieh, Chiou, Chien-Shun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156723/
https://www.ncbi.nlm.nih.gov/pubmed/28018331
http://dx.doi.org/10.3389/fmicb.2016.02010
Descripción
Sumario:We built a pan-genome allele database with 395 genomes of Salmonella enterica serovar Enteritidis and developed computer tools for analysis of whole genome sequencing (WGS) data of bacterial isolates for disease cluster identification. A web server (http://wgmlst.imst.nsysu.edu.tw) was set up with the database and the tools, allowing users to upload WGS data to generate whole genome multilocus sequence typing (wgMLST) profiles and to perform cluster analysis of wgMLST profiles. The usefulness of the database in disease cluster identification was demonstrated by analyzing a panel of genomes from 55 epidemiologically well-defined S. Enteritidis isolates provided by the Minnesota Department of Health. The wgMLST-based cluster analysis revealed distinct clades that were concordant with the epidemiologically defined outbreaks. Thus, using a common pan-genome allele database, wgMLST can be a promising WGS-based subtyping approach for disease surveillance and outbreak investigation across laboratories.