Cargando…

The Role of Hippocampal Estradiol Receptor-α in a Perimenopausal Affective Disorders-Like Rat Model and Attenuating of Anxiety by Electroacupuncture

Hormone replacement therapy is the principal treatment for perimenopausal affective disorders which can cause severe side effects. The present study compared the effects of electroacupuncture (EA) and estradiol treatment on perimenopausal affective disorders at the behavioral and cellular levels. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xun, Huang, Yongheng, Yuan, Shiwen, Tamadon, Amin, Ma, Shulan, Feng, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156811/
https://www.ncbi.nlm.nih.gov/pubmed/28044085
http://dx.doi.org/10.1155/2016/4958312
Descripción
Sumario:Hormone replacement therapy is the principal treatment for perimenopausal affective disorders which can cause severe side effects. The present study compared the effects of electroacupuncture (EA) and estradiol treatment on perimenopausal affective disorders at the behavioral and cellular levels. In this randomized experimental in vivo study, adult female rats were divided into intact, ovariectomy, chronic unpredictable stress (CUS), and ovariectomy and CUS combination groups. After week 6, all groups were subdivided to three subgroups of control, EA, and estradiol treatment. The behavioral parameters in the open field and the elevated plus maze tests were assessed before and after treatments. Alterations of serum steroid hormones and changes of estradiol receptor-α (ER-α) immunofluorescence neurons in the hippocampus sections were evaluated. EA treatment caused more antianxiety effects than estradiol treatment in CUS group (P < 0.05). Notably, estradiol and EA treatments had better significant behavioral effects when the models were not estrogen-deficient. Importantly, within each group, compared to the control group, the numbers of ER-α-positive neurons were significantly larger in EA subgroups. Therefore, EA had antianxiety effects on perimenopausal affective disorders caused by CUS but not by estrogen deficiency and upregulation of hippocampus ER-α neurons may contribute to its mechanism of action.