Cargando…
A perturbation-based framework for link prediction via non-negative matrix factorization
Many link prediction methods have been developed to infer unobserved links or predict latent links based on the observed network structure. However, due to network noises and irregular links in real network, the performances of existed methods are usually limited. Considering random noises and irreg...
Autores principales: | Wang, Wenjun, Cai, Fei, Jiao, Pengfei, Pan, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156920/ https://www.ncbi.nlm.nih.gov/pubmed/27976672 http://dx.doi.org/10.1038/srep38938 |
Ejemplares similares
-
A unified framework for link prediction based on non-negative matrix factorization with coupling multivariate information
por: Wang, Wenjun, et al.
Publicado: (2018) -
Link prediction in complex networks via matrix perturbation and decomposition
por: Xu, Xiaoya, et al.
Publicado: (2017) -
Link predication based on matrix factorization by fusion of multi class organizations of the network
por: Jiao, Pengfei, et al.
Publicado: (2017) -
Link prediction based on non-negative matrix factorization
por: Chen, Bolun, et al.
Publicado: (2017) -
The Non-perturbative S-matrix Bootstrap
por: Penedones, João
Publicado: (2023)