Cargando…

Capillary isoelectric focusing after sample enrichment with immunoaffinity chromatography in a single capillary

For accurate micro-scale quantification of a specific protein in biological fluids, immunoaffinity chromatography (IAC) and isoelectric focusing (IEF) were combined in a single fused-silica capillary. The inner wall of the capillary was coated with an anti-E-tag antibody at the inlet side to form an...

Descripción completa

Detalles Bibliográficos
Autores principales: Shimura, Kiyohito, Nagai, Toshihiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156949/
https://www.ncbi.nlm.nih.gov/pubmed/27976690
http://dx.doi.org/10.1038/srep39221
Descripción
Sumario:For accurate micro-scale quantification of a specific protein in biological fluids, immunoaffinity chromatography (IAC) and isoelectric focusing (IEF) were combined in a single fused-silica capillary. The inner wall of the capillary was coated with an anti-E-tag antibody at the inlet side to form an IAC column, and polydimethylacrylamide, a neutral polymer, at the outlet side to form the capillary for IEF. After loading a sample, the whole capillary was filled with a carrier ampholyte solution. An anode solution, an acid, was then introduced to fill only the IAC column segment. Focusing was started with a pressure that balances with the electroosmotic flow produced in the acidified IAC column. Fluorescence-labeled recombinant Fab with an E-tag spiked at 16 pM to 10 nM in 50% serum was separated and detected with high precision. The coupling principle allows rapid and high-resolution IEF analysis of a protein in a biological sample without any loss of the immunoaffinity captured protein.