Cargando…
Epidemiological analysis of hemorrhagic fever with renal syndrome in China with the seasonal-trend decomposition method and the exponential smoothing model
Hemorrhagic fever with renal syndrome (HFRS) is one of the most common infectious diseases globally. With the most reported cases in the world, the epidemic characteristics are still remained unclear in China. This paper utilized the seasonal-trend decomposition (STL) method to analyze the periodici...
Autores principales: | Ke, Guibao, Hu, Yao, Huang, Xin, Peng, Xuan, Lei, Min, Huang, Chaoli, Gu, Li, Xian, Ping, Yang, Dehua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5157041/ https://www.ncbi.nlm.nih.gov/pubmed/27976704 http://dx.doi.org/10.1038/srep39350 |
Ejemplares similares
-
Estimating the Long-Term Epidemiological Trends and Seasonality of Hemorrhagic Fever with Renal Syndrome in China
por: Xiao, Yuhan, et al.
Publicado: (2021) -
Spatial epidemiological characteristics and exponential smoothing model application of tuberculosis in Qinghai Plateau, China
por: Shang, Y., et al.
Publicado: (2022) -
Crimean-Congo hemorrhagic fever: epidemiological trends and controversies in treatment
por: Maltezou, Helena C, et al.
Publicado: (2011) -
Trends of reported human brucellosis cases in mainland China from 2007 to 2017: an exponential smoothing time series analysis
por: Guan, Peng, et al.
Publicado: (2018) -
Forecasting with exponential smoothing: the state space approach
por: Hyndman, Rob J, et al.
Publicado: (2008)