Cargando…

Intralaminar and tectal projections to the subthalamus in the rat

Projections from the posterior intralaminar thalamic nuclei and the superior colliculus (SC) to the subthalamic nucleus (STN) and the zona incerta (ZI) have been described in the primate and rodent. The aims of this study was to investigate several questions on these projections, using modern neurot...

Descripción completa

Detalles Bibliográficos
Autores principales: Kita, Takako, Shigematsu, Naoki, Kita, Hitoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5157720/
https://www.ncbi.nlm.nih.gov/pubmed/27717088
http://dx.doi.org/10.1111/ejn.13413
Descripción
Sumario:Projections from the posterior intralaminar thalamic nuclei and the superior colliculus (SC) to the subthalamic nucleus (STN) and the zona incerta (ZI) have been described in the primate and rodent. The aims of this study was to investigate several questions on these projections, using modern neurotracing techniques in rats, to advance our understanding of the role of STN and ZI. We examined whether projection patterns to the subthlamus can be used to identify homologues of the primate centromedian (CM) and the parafascicular nucleus (Pf) in the rodent, the topography of the projection including what percent of intralaminar neurons participate in the projections, and electron microscopic examination of intralaminar synaptic boutons in STN. The aim on the SC‐subthalamic projection was to examine whether STN is the main target of the projection. This study revealed: (i) the areas similar to primate CM and Pf could be recognized in the rat; (ii) the Pf‐like area sends a very heavy topographically organized projection to STN but very sparse projection to ZI, which suggested that Pf might control basal ganglia function through STN; (iii) the projection from the CM‐like area to the subthalamus was very sparse; (iv) Pf boutons and randomly sampled asymmetrical synapses had similar distributions on the dendrites of STN neurons; and (v) the lateral part of the deep layers of SC sends a very heavy projection to ZI and moderate to sparse projection to limited parts of STN, suggesting that SC is involved in a limited control of basal ganglia function.