Cargando…
Role of proteasome-dependent protein degradation in long-term operant memory in Aplysia
We investigated the in vivo role of protein degradation during intermediate (ITM) and long-term memory (LTM) in Aplysia using an operant learning paradigm. The proteasome inhibitor MG-132 inhibited the induction and molecular consolidation of LTM with no effect on ITM. Remarkably, maintenance of ste...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159658/ https://www.ncbi.nlm.nih.gov/pubmed/27980077 http://dx.doi.org/10.1101/lm.043794.116 |
Sumario: | We investigated the in vivo role of protein degradation during intermediate (ITM) and long-term memory (LTM) in Aplysia using an operant learning paradigm. The proteasome inhibitor MG-132 inhibited the induction and molecular consolidation of LTM with no effect on ITM. Remarkably, maintenance of steady-state protein levels through inhibition of protein synthesis using either anisomycin or rapamycin in conjunction with proteasome inhibition permitted the formation of robust 24 h LTM. Our studies suggest a primary role for proteasomal activity in facilitation of gene transcription for LTM and raise the possibility that synaptic mechanisms are sufficient to sustain 24 h memory. |
---|