Cargando…

3-Hydroxi-Anthranilic Acid is Early Expressed in Stroke

Using an immunohistochemical technique, we have studied the distribution of 3-OH-anthranilic acid (3-HAA) in the rat brain. Our study was carried out in control animals and in rats in which a stroke model (single transient middle cerebral artery occlusion) was performed. A monoclonal antibody direct...

Descripción completa

Detalles Bibliográficos
Autores principales: Mangas, A., Yajeya, J., González, N., Ruiz, I., Geffard, M., Coveñas, R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PAGEPress Publications, Pavia, Italy 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159783/
https://www.ncbi.nlm.nih.gov/pubmed/28076933
http://dx.doi.org/10.4081/ejh.2016.2709
Descripción
Sumario:Using an immunohistochemical technique, we have studied the distribution of 3-OH-anthranilic acid (3-HAA) in the rat brain. Our study was carried out in control animals and in rats in which a stroke model (single transient middle cerebral artery occlusion) was performed. A monoclonal antibody directed against 3-HAA was also developed. 3-HAA was exclusively observed in the infarcted regions (ipsilateral striatum/cerebral cortex), 2, 5 and 21 days after the induction of stroke. In control rats and in the contralateral side of the stroke animals, no immunoreactivity for 3-HAA was visualized. Under pathological conditions (from early phases of stroke), we reported for the first time the presence of 3-HAA in the mammalian brain. By double immunohistochemistry, the coexistence of 3-HAA and GFAP was observed in astrocytes. The distribution of 3-HAA matched perfectly with the infarcted regions. Our findings suggest that, in stroke, 3-HAA could be involved in the tissue damage observed in the infarcted regions, since it is well known that 3-HAA exerts cytotoxic effects.