Cargando…

Mitochondrial Phylogenomics yields Strongly Supported Hypotheses for Ascaridomorph Nematodes

Ascaridomorph nematodes threaten the health of humans and other animals worldwide. Despite their medical, veterinary and economic importance, the identification of species lineages and establishing their phylogenetic relationships have proved difficult in some cases. Many working hypotheses regardin...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Guo-Hua, Nadler, Steven A., Liu, Shan-Shan, Podolska, Magdalena, D’Amelio, Stefano, Shao, Renfu, Gasser, Robin B., Zhu, Xing-Quan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159812/
https://www.ncbi.nlm.nih.gov/pubmed/27982084
http://dx.doi.org/10.1038/srep39248
Descripción
Sumario:Ascaridomorph nematodes threaten the health of humans and other animals worldwide. Despite their medical, veterinary and economic importance, the identification of species lineages and establishing their phylogenetic relationships have proved difficult in some cases. Many working hypotheses regarding the phylogeny of ascaridomorphs have been based on single-locus data, most typically nuclear ribosomal RNA. Such single-locus hypotheses lack independent corroboration, and for nuclear rRNA typically lack resolution for deep relationships. As an alternative approach, we analyzed the mitochondrial (mt) genomes of anisakids (~14 kb) from different fish hosts in multiple countries, in combination with those of other ascaridomorphs available in the GenBank database. The circular mt genomes range from 13,948-14,019 bp in size and encode 12 protein-coding genes, 2 ribosomal RNAs and 22 transfer RNA genes. Our analysis showed that the Pseudoterranova decipiens complex consists of at least six cryptic species. In contrast, the hypothesis that Contracaecum ogmorhini represents a complex of cryptic species is not supported by mt genome data. Our analysis recovered several fundamental and uncontroversial ascaridomorph clades, including the monophyly of superfamilies and families, except for Ascaridiidae, which was consistent with the results based on nuclear rRNA analysis. In conclusion, mt genome analysis provided new insights into the phylogeny and taxonomy of ascaridomorph nematodes.