Cargando…
Making brain–machine interfaces robust to future neural variability
A major hurdle to clinical translation of brain–machine interfaces (BMIs) is that current decoders, which are trained from a small quantity of recent data, become ineffective when neural recording conditions subsequently change. We tested whether a decoder could be made more robust to future neural...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159828/ https://www.ncbi.nlm.nih.gov/pubmed/27958268 http://dx.doi.org/10.1038/ncomms13749 |
Sumario: | A major hurdle to clinical translation of brain–machine interfaces (BMIs) is that current decoders, which are trained from a small quantity of recent data, become ineffective when neural recording conditions subsequently change. We tested whether a decoder could be made more robust to future neural variability by training it to handle a variety of recording conditions sampled from months of previously collected data as well as synthetic training data perturbations. We developed a new multiplicative recurrent neural network BMI decoder that successfully learned a large variety of neural-to-kinematic mappings and became more robust with larger training data sets. Here we demonstrate that when tested with a non-human primate preclinical BMI model, this decoder is robust under conditions that disabled a state-of-the-art Kalman filter-based decoder. These results validate a new BMI strategy in which accumulated data history are effectively harnessed, and may facilitate reliable BMI use by reducing decoder retraining downtime. |
---|