Cargando…
Making brain–machine interfaces robust to future neural variability
A major hurdle to clinical translation of brain–machine interfaces (BMIs) is that current decoders, which are trained from a small quantity of recent data, become ineffective when neural recording conditions subsequently change. We tested whether a decoder could be made more robust to future neural...
Autores principales: | Sussillo, David, Stavisky, Sergey D., Kao, Jonathan C., Ryu, Stephen I., Shenoy, Krishna V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159828/ https://www.ncbi.nlm.nih.gov/pubmed/27958268 http://dx.doi.org/10.1038/ncomms13749 |
Ejemplares similares
-
Corrigendum: Making brain-machine interfaces robust to future neural variability
por: Sussillo, David, et al.
Publicado: (2017) -
Leveraging neural dynamics to extend functional lifetime of brain-machine interfaces
por: Kao, Jonathan C., et al.
Publicado: (2017) -
Brain-machine interface cursor position only weakly affects monkey and human motor cortical activity in the absence of arm movements
por: Stavisky, Sergey D., et al.
Publicado: (2018) -
Publisher Correction: Brain-machine interface cursor position only weakly affects monkey and human motor cortical activity in the absence of arm movements
por: Stavisky, Sergey D., et al.
Publicado: (2019) -
Single-trial dynamics of motor cortex and their applications to brain-machine interfaces
por: Kao, Jonathan C., et al.
Publicado: (2015)