Cargando…
Placental methylome analysis from a prospective autism study
BACKGROUND: Autism spectrum disorders (ASD) are increasingly prevalent neurodevelopmental disorders that are behaviorally diagnosed in early childhood. Most ASD cases likely arise from a complex mixture of genetic and environmental factors, an interface where the epigenetic marks of DNA methylation...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159983/ https://www.ncbi.nlm.nih.gov/pubmed/28018572 http://dx.doi.org/10.1186/s13229-016-0114-8 |
Sumario: | BACKGROUND: Autism spectrum disorders (ASD) are increasingly prevalent neurodevelopmental disorders that are behaviorally diagnosed in early childhood. Most ASD cases likely arise from a complex mixture of genetic and environmental factors, an interface where the epigenetic marks of DNA methylation may be useful as risk biomarkers. The placenta is a potentially useful surrogate tissue characterized by a methylation pattern of partially methylated domains (PMDs) and highly methylated domains (HMDs) reflective of methylation patterns observed in the early embryo. METHODS: In this study, we investigated human term placentas from the MARBLES (Markers of Autism Risk in Babies: Learning Early Signs) prospective study by whole genome bisulfite sequencing. We also examined the utility of PMD/HMDs in detecting methylation differences consistent with ASD diagnosis at age three. RESULTS: We found that while human placental methylomes have highly reproducible PMD and HMD locations, there is a greater variation between individuals in methylation levels over PMDs than HMDs due to both sampling and individual variability. In a comparison of methylation differences in placental samples from 24 ASD and 23 typically developing (TD) children, a HMD containing a putative fetal brain enhancer near DLL1 was found to reach genome-wide significance and was validated for significantly higher methylation in ASD by pyrosequencing. CONCLUSIONS: These results suggest that the placenta could be an informative surrogate tissue for predictive ASD biomarkers in high-risk families. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13229-016-0114-8) contains supplementary material, which is available to authorized users. |
---|