Cargando…
Inherent variability of cancer-specific aneuploidy generates metastases
BACKGROUND: The genetic basis of metastasis is still unclear because metastases carry individual karyotypes and phenotypes, rather than consistent mutations, and are rare compared to conventional mutation. There is however correlative evidence that metastasis depends on cancer-specific aneuploidy, a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5160004/ https://www.ncbi.nlm.nih.gov/pubmed/28018487 http://dx.doi.org/10.1186/s13039-016-0297-x |
_version_ | 1782481860930043904 |
---|---|
author | Bloomfield, Mathew Duesberg, Peter |
author_facet | Bloomfield, Mathew Duesberg, Peter |
author_sort | Bloomfield, Mathew |
collection | PubMed |
description | BACKGROUND: The genetic basis of metastasis is still unclear because metastases carry individual karyotypes and phenotypes, rather than consistent mutations, and are rare compared to conventional mutation. There is however correlative evidence that metastasis depends on cancer-specific aneuploidy, and that metastases are karyotypically related to parental cancers. Accordingly we propose that metastasis is a speciation event. This theory holds that cancer-specific aneuploidy varies the clonal karyotypes of cancers automatically by unbalancing thousands of genes, and that rare variants form new autonomous subspecies with metastatic or other non-parental phenotypes like drug-resistance – similar to conventional subspeciation. RESULTS: To test this theory, we analyzed the karyotypic and morphological relationships between seven cancers and corresponding metastases. We found (1) that the cellular phenotypes of metastases were closely related to those of parental cancers, (2) that metastases shared 29 to 96% of their clonal karyotypic elements or aneusomies with the clonal karyotypes of parental cancers and (3) that, unexpectedly, the karyotypic complexity of metastases was very similar to that of the parental cancer. This suggests that metastases derive cancer-specific autonomy by conserving the overall complexity of the parental karyotype. We deduced from these results that cancers cause metastases by karyotypic variations and selection for rare metastatic subspecies. Further we asked whether metastases with multiple metastasis-specific aneusomies are assembled in one or multiple, sequential steps. Since (1) no stable karyotypic intermediates of metastases were observed in cancers here and previously by others, and (2) the karyotypic complexities of cancers are conserved in metastases, we concluded that metastases are generated from cancers in one step – like subspecies in conventional speciation. CONCLUSIONS: We conclude that the risk of cancers to metastasize is proportional to the degree of cancer-specific aneuploidy, because aneuploidy catalyzes the generation of subspecies, including metastases, at aneuploidy-dependent rates. Since speciation by random chromosomal rearrangements and selection is unpredictable, the theory that metastases are karyotypic subspecies of cancers also explains Foulds’ rules, which hold that the origins of metastases are “abrupt” and that their phenotypes are “unpredictable.” |
format | Online Article Text |
id | pubmed-5160004 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-51600042016-12-23 Inherent variability of cancer-specific aneuploidy generates metastases Bloomfield, Mathew Duesberg, Peter Mol Cytogenet Research BACKGROUND: The genetic basis of metastasis is still unclear because metastases carry individual karyotypes and phenotypes, rather than consistent mutations, and are rare compared to conventional mutation. There is however correlative evidence that metastasis depends on cancer-specific aneuploidy, and that metastases are karyotypically related to parental cancers. Accordingly we propose that metastasis is a speciation event. This theory holds that cancer-specific aneuploidy varies the clonal karyotypes of cancers automatically by unbalancing thousands of genes, and that rare variants form new autonomous subspecies with metastatic or other non-parental phenotypes like drug-resistance – similar to conventional subspeciation. RESULTS: To test this theory, we analyzed the karyotypic and morphological relationships between seven cancers and corresponding metastases. We found (1) that the cellular phenotypes of metastases were closely related to those of parental cancers, (2) that metastases shared 29 to 96% of their clonal karyotypic elements or aneusomies with the clonal karyotypes of parental cancers and (3) that, unexpectedly, the karyotypic complexity of metastases was very similar to that of the parental cancer. This suggests that metastases derive cancer-specific autonomy by conserving the overall complexity of the parental karyotype. We deduced from these results that cancers cause metastases by karyotypic variations and selection for rare metastatic subspecies. Further we asked whether metastases with multiple metastasis-specific aneusomies are assembled in one or multiple, sequential steps. Since (1) no stable karyotypic intermediates of metastases were observed in cancers here and previously by others, and (2) the karyotypic complexities of cancers are conserved in metastases, we concluded that metastases are generated from cancers in one step – like subspecies in conventional speciation. CONCLUSIONS: We conclude that the risk of cancers to metastasize is proportional to the degree of cancer-specific aneuploidy, because aneuploidy catalyzes the generation of subspecies, including metastases, at aneuploidy-dependent rates. Since speciation by random chromosomal rearrangements and selection is unpredictable, the theory that metastases are karyotypic subspecies of cancers also explains Foulds’ rules, which hold that the origins of metastases are “abrupt” and that their phenotypes are “unpredictable.” BioMed Central 2016-12-16 /pmc/articles/PMC5160004/ /pubmed/28018487 http://dx.doi.org/10.1186/s13039-016-0297-x Text en © The Author(s). 2016 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Bloomfield, Mathew Duesberg, Peter Inherent variability of cancer-specific aneuploidy generates metastases |
title | Inherent variability of cancer-specific aneuploidy generates metastases |
title_full | Inherent variability of cancer-specific aneuploidy generates metastases |
title_fullStr | Inherent variability of cancer-specific aneuploidy generates metastases |
title_full_unstemmed | Inherent variability of cancer-specific aneuploidy generates metastases |
title_short | Inherent variability of cancer-specific aneuploidy generates metastases |
title_sort | inherent variability of cancer-specific aneuploidy generates metastases |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5160004/ https://www.ncbi.nlm.nih.gov/pubmed/28018487 http://dx.doi.org/10.1186/s13039-016-0297-x |
work_keys_str_mv | AT bloomfieldmathew inherentvariabilityofcancerspecificaneuploidygeneratesmetastases AT duesbergpeter inherentvariabilityofcancerspecificaneuploidygeneratesmetastases |